TSMC Celebrates 30th North America Technology Symposium with Innovations Powering AI with Silicon Leadership
- TSMC introduced the A16 technology with nanosheet transistors for improved logic density and performance.
- The company showcased its System-on-Wafer technology to address AI requirements for hyperscaler datacenters.
- TSMC highlighted its commitment to providing comprehensive technologies for AI applications across various industries.
- None.
This year marks the 30th anniversary of TSMC’s North America Technology Symposium, and more than 2,000 attended the event, growing from less than 100 attendees 30 years ago. The North America Technology Symposium in
“We are entering an AI-empowered world, where artificial intelligence not only runs in data centers, but PCs, mobile devices, automobiles, and even the Internet of Things,” said TSMC CEO Dr. C.C. Wei. “At TSMC, we are offering our customers the most comprehensive set of technologies to realize their visions for AI, from the world’s most advanced silicon, to the broadest portfolio of advanced packaging and 3D IC platforms, to specialty technologies that integrate the digital world with the real world.”
New technologies introduced at the symposium include:
TSMC A16TM Technology: With TSMC’s industry-leading N3E technology now in production, and N2 on track for production in the second half of 2025, TSMC debuted A16, the next technology on its roadmap. A16 will combine TSMC’s Super Power Rail architecture with its nanosheet transistors for planned production in 2026. It improves logic density and performance by dedicating front-side routing resources to signals, making A16 ideal for HPC products with complex signal routes and dense power delivery networks. Compared to TSMC’s N2P process, A16 will provide 8
TSMC NanoFlexTM Innovation for Nanosheet Transistors: TSMC’s upcoming N2 technology will come with TSMC NanoFlex, the company’s next breakthrough in design-technology co-optimization. TSMC NanoFlex provides designers with flexibility in N2 standard cells, the basic building blocks of chip design, with short cells emphasizing small area and greater power efficiency, and tall cells maximizing performance. Customers are able to optimize the combination of short and tall cells within the same design block, tuning their designs to reach the optimal power, performance, and area tradeoffs for their application.
N4C Technology: Bringing TSMC’s advanced technology to a broader range of of applications, TSMC announced N4C, an extension of N4P technology with up to
CoWoS®, SoIC, and System-on-Wafer (TSMC-SoW™ ): TSMC’s Chip on Wafer on Substrate (CoWoS®) has been a key enabler for the AI revolution by allowing customers to pack more processor cores and high-bandwidth memory (HBM) stacks side by side on one interposer. At the same time, our System on Integrated Chips (SoIC) has established itself as the leading solution for 3D chip stacking, and customers are increasingly pairing CoWoS with SoIC and other components for the ultimate system-in-package (SiP) integration.
With System-on-Wafer, TSMC is providing a revolutionary new option to enable a large array of dies on a 300mm wafer, offering more compute power while occupying far less data center space and boosting performance per watt by orders of magnitude. TSMC’s first SoW offering, a logic-only wafer based on Integrated Fan-Out (InFO) technology, is already in production. A chip-on-wafer version leveraging CoWoS technology is scheduled to be ready in 2027, enabling integration of SoIC, HBM and other components to create a powerful wafer-level system with computing power comparable to a data center server rack, or even an entire server.
Silicon Photonics Integration: TSMC is developing Compact Universal Photonic Engine (COUPE™ ) technology to support the explosive growth in data transmission that comes with the AI boom. COUPE uses SoIC-X chip stacking technology to stack an electrical die on top of a photonic die, offering the lowest impedance at the die-to-die interface and higher energy efficiency than conventional stacking methods. TSMC plans to qualify COUPE for small form factor pluggables in 2025, followed by integration into CoWoS packaging as co-packaged optics (CPO) in 2026, bringing optical connections directly into the package.
Automotive Advanced Packaging: After introducing the N3AE “Auto Early” process in 2023, TSMC continues to serve our automotive customers’ needs for greater computing power that meets the safety and quality demands of the highway by integrating advanced silicon with advanced packaging. TSMC is developing InFO-oS and CoWoS-R solutions for applications such as advanced driver assistance systems (ADAS), vehicle control, and vehicle central computers, targeting AEC-Q100 Grade 2 qualification by fourth quarter of 2025.
About TSMC
TSMC pioneered the pure-play foundry business model when it was founded in 1987, and has been the world’s leading dedicated semiconductor foundry ever since. The Company supports a thriving ecosystem of global customers and partners with the industry’s leading process technologies and portfolio of design enablement solutions to unleash innovation for the global semiconductor industry. With global operations spanning
TSMC deployed 288 distinct process technologies, and manufactured 11,895 products for 528 customers in 2023 by providing broadest range of advanced, specialty and advanced packaging technology services. The Company is headquartered in Hsinchu,
View source version on businesswire.com: https://www.businesswire.com/news/home/20240424036229/en/
TSMC Spokesperson:
Wendell Huang
Senior Vice President and CFO
Tel: 886-3-505-5901
Media Contacts:
Nina Kao
Head of Public Relations
Tel: 886-3-563-6688 ext.7125036
Mobile: 886-988-239-163
E-Mail: nina_kao@tsmc.com
Michael Kramer
Public Relations
Tel: 886-3-563-6688 ext. 7125031
Mobile: 886-988-931-352
E-Mail: pdkramer@tsmc.com
Source: TSMC
FAQ
What technology did TSMC unveil at the North America Technology Symposium?
When is the planned production for TSMC A16 technology?
What are the key features of TSMC A16 technology?
What is the purpose of TSMC's System-on-Wafer technology?