STOCK TITAN

Tenneco Explores Synthetic Fuels for Climate-Neutral Mobility

Rhea-AI Impact
(Low)
Rhea-AI Sentiment
(Positive)
Tags
Rhea-AI Summary

Tenneco is leveraging over a century of powertrain expertise to investigate synthetic fuels (e-fuels) as a solution for reducing emissions from internal combustion engines (ICE). Their Powertrain business group is collaborating on the NAMOSYN project with various academic and industry partners to assess the technical and commercial viability of e-fuels. This initiative aims to enable climate-neutral transportation while using existing fuel infrastructure. Initial tests indicate a potential reduction of over 50% in harmful emissions, making e-fuels a promising near-term technology for sustainable mobility.

Positive
  • Collaboration on the NAMOSYN project to explore synthetic fuel technology.
  • Initial tests showing over 50% reduction in nitrogen oxide, carbon monoxide, and particle emissions.
Negative
  • None.

LAKE FOREST, Ill., July 22, 2021  /PRNewswire/ -- Tenneco is putting its 100-plus years of powertrain expertise in improving vehicle fuel efficiency and reducing emissions to work to explore synthetic fuels (e-fuels), a viable near-term solution to further maximize the efficiency and minimize the carbon footprint of internal combustion engines (ICE). Tenneco's Powertrain business group is partnering with key academic and industry experts to examine the technical possibilities and commercial feasibility of synthetic fuels as a key technology to help the industry transition to climate-neutral transportation. This collaborative effort is referred to as the NAMOSYN project.

Synthetic fuels for passenger vehicles, commercial trucks or even marine applications can play an important role in achieving a near zero emissions mobility, by using renewable energy sources, such as solar or wind power, to create a closed CO2 cycle when viewed from a holistic "well-to-wheel" perspective. A climate-neutral alternative to petroleum-based fuels, they also offer the potential for significantly reduced overall emissions, allowing Tenneco's Clean Air experts to better manage any remaining pollutants through the aftertreatment process.

Synthetically produced, climate-neutral e-fuels can be used in today's gasoline and diesel engines with only minor modifications for most of e-fuels and in blends with conventional fuels. This makes them particularly suitable for vehicles with traditional ICE as well as alternative powertrains such as hybrids. Additionally, the e-fuels can be made available to consumers by using mostly the existing, well-developed fuel distribution and filling station infrastructure with only minor adjustments, making the technology even more appealing as a near-term, fast-to-market solution.

"It is widely acknowledged that solutions must be found to reduce a vehicle's carbon footprint. In addition to light vehicles, internal combustion engines are also popular in trucks, marine propulsion, construction equipment and agricultural machinery," explains Dr. Steffen Hoppe, Director Global Technology for piston rings and cylinder liners at Tenneco´s Powertrain business group in Burscheid, Germany. "Regardless of the differing opinions when full electrification will be reached, any technology that we can adopt now that enables a significant reduction in CO2 emissions, or even CO2-neutral operation of the IC engine, will be an essential contributor to the timely achievement of climate targets. We are excited to be an active part in the development of this type of technology."

Research project NAMOSYN – sustainable mobility with synthetic fuels

To help further the understanding of synthetic fuel technology, Tenneco has joined a consortium of automotive suppliers, vehicle and fuel manufacturers, chemical companies, Fraunhofer institutes and universities as part of the NAMOSYN project (www.namosyn.de), which is supported by the German Federal Ministry of Education and Research. The effort is scheduled to run through March 2022.

Taking advantage of the site´s 19 fully automated and monitored high-performance test cells, Tenneco´s Burscheid, Germany team is investigating how innovative piston ring designs in combination with synthetic fuels can be used to develop mobility concepts with lowest emissions, the target being zero emissions impact.

The NAMOSYN project also serves to develop cost-effective and energy efficient manufacturing processes for synthetic fuels and to test them in internal combustion engines. In the diesel sector, this notably concerns the group of oxymethylene ethers (OME); for gasoline engines, the focus is on dimethyl carbonate (DMC) and methyl formate (MeFo). In parallel, a wide range of different material configurations are tested to determine the optimum synthesis and composition over/across the entire process chain.

Initial results of the current research are promising. "By using synthetic fuels in internal combustion engines, we have been able to demonstrate a reduction of 50 percent or more in all nitrogen oxide, carbon monoxide and particle emissions," explains Bartosch Gadomski, Senior Test Engineer and Project Manager NAMOSYN at Tenneco. "In order to actively support the timely market introduction of synthetic fuels as far as possible, we also test mixtures or blends of conventional fuels and e-fuels under real conditions on our engine test benches."

In the final step, these test units are installed in test vehicles and examined for driving behavior and emissions. In addition, the compatibility of the e-fuels with the existing infrastructure for fuels, such as tank trucks or filling station systems, is evaluated and solution concepts for new requirements are developed.

Synthetic fuels as an important component in the mix of technology solutions for sustainable mobility

To minimize climate impacting emissions, synthetic fuels are preferably produced using electricity that is generated from carbon neutral renewable sources. In case of OME and DMC, synthetic fuels as methanol, ethanol, MTG Fischer Tropsch Diesel, and others can be produced with hydrogen by electrolysis – also generated by using surplus fluctuations in renewable electricity – and carbon dioxide (CO2), which comes from industrial waste gases or from the air. The next process step converts the syn gas to synthetic fuels. This method ensures that a closed CO2 cycle is created: in a holistic approach ("well-to-wheel"), the vehicle later emits only as much CO2 as was originally extracted from the air to produce these synthetic fuels.

E-fuels should have favorable combustion properties so that an ICE can be operated as efficiently as possible and local pollutant emissions can be kept low. One of the advantages of synthetic fuels is that their composition can be developed specifically to meet the needs and different performance requirements of their applications. In order to achieve the highest possible efficiency, e.g. via so-called lean combustion, adjustments to engine control and hardware are necessary, depending on the engine type.

The aim of research at Tenneco is to achieve the highest possible efficiency of internal combustion engines as well as the greatest possible reduction of raw emissions, especially in terms of particulate emissions.

"The development of new vehicles with ICE powertrains must pursue the goal that these drives will be climate-neutral. We need synthetic fuels and hydrogen from sustainable energy sources in order to achieve the climate targets for future cars and trucks, but also for the millions of existing vehicles powered by an internal combustion engine," concludes Hoppe.

About Tenneco

Tenneco (NYSE: TEN) is one of the world's leading designers, manufacturers and marketers of automotive products for original equipment and aftermarket customers, with full year 2020 revenues of $15.4 billion and approximately 73,000 team members working at more than 270 sites worldwide. Through our four business groups, Motorparts, Performance Solutions, Clean Air and Powertrain, Tenneco is driving advancements in global mobility by delivering technology solutions for diversified global markets, including light vehicle, commercial truck, off-highway, industrial, motorsport and the aftermarket.

Visit www.tenneco.com to learn more.

Safe Harbor
This release contains forward-looking statements. These forward-looking statements include, among others, statements relating to our plans to explore climate-neutral mobility.  Forward-looking statements are subject to a number of risks and uncertainties that could cause actual results to materially differ from those described in the forward-looking statements, including the possibility that Tenneco may not progress climate-neutral mobility; the possibility that Tenneco may not achieve efficiencies in internal combustion engines or reduction in raw emissions; as well as the risk factors and cautionary statements included in Tenneco's periodic and current reports (Forms 10-K, 10-Q and 8-K) filed from time to time with the SEC. Given these risks and uncertainties, investors should not place undue reliance on forward-looking statements as a prediction of actual results. Unless otherwise indicated, the forward-looking statements in this release are made as of the date of this communication, and, except as required by law, Tenneco does not undertake any obligation, and disclaims any obligation, to publicly disclose revisions or updates to any forward-looking statements. Additional information regarding these risk factors and uncertainties is detailed from time to time in the company's SEC filings, including but not limited to its annual report on Form 10-K for the year ended December 31, 2020.

Contact:

Steve Blow
Executive Director, Corporate Communications,
Tenneco Inc.
+1 517-262-0655
sblow@tenneco.com

Stefan Zech
Sr. Manager Communications,
Tenneco Inc.
+49 (611) 201 9110
stefan.zech@tenneco.com

 

Cision View original content to download multimedia:https://www.prnewswire.com/news-releases/tenneco-explores-synthetic-fuels-for-climate-neutral-mobility-301339179.html

SOURCE Tenneco Inc.

FAQ

What is Tenneco's focus regarding synthetic fuels?

Tenneco is exploring synthetic fuels as a means to improve fuel efficiency and reduce emissions from internal combustion engines.

What is the NAMOSYN project?

The NAMOSYN project is a collaborative initiative involving Tenneco and other partners to investigate the technical possibilities and commercial feasibility of synthetic fuels.

When will the NAMOSYN project conclude?

The NAMOSYN project is scheduled to run through March 2022.

How effective are synthetic fuels in reducing emissions according to Tenneco's tests?

Tenneco's tests have shown that synthetic fuels can reduce nitrogen oxide, carbon monoxide, and particle emissions by over 50%.

What is Tenneco's revenue for the year 2020?

Tenneco reported revenues of $15.4 billion for the year 2020.

Tsakos Energy Navigation Ltd.

NYSE:TEN

TEN Rankings

TEN Latest News

TEN Stock Data

528.62M
21.13M
26.67%
22.36%
1.4%
Oil & Gas Midstream
Energy
Link
United States of America
Athens