Snowflake Expands Native Python Support and Data Access to Advance Programmability in the Data Cloud
Snowflake (NYSE: SNOW) has launched Snowpark for Python in public preview, enhancing programmability for data scientists and developers. The new features improve data access and application development within the Data Cloud. Key innovations include support for streaming data, integration with Streamlit, and tools for machine learning. Notable clients like Allegis Group utilize these advancements to enhance their data capabilities. As a result, Snowflake strengthens its position in the competitive data market.
- Launch of Snowpark for Python enhances programmability for data professionals.
- Integration with Streamlit for enhanced application development.
- Increased data accessibility through streaming data support and open formats.
- Major clients, including Allegis Group, leverage new capabilities, indicating strong market demand.
- None.
- Snowflake launches Snowpark for Python, now available to all customers in public preview, making Python’s rich ecosystem of open-source packages and libraries accessible for data scientists, data engineers, and application developers
- Snowflake increases data access with new enhancements for working with streaming data, and expands the Data Cloud to open data formats and data stored on-premises
-
Customers like 84.51°,
Allegis Group , Sophos, and Method Analytics leverage Snowflake to drive innovation with expanded data science and application development capabilities
Snowflake Expands Native Python Support and Data Access to Advance Programmability in the Data Cloud (Graphic: Business Wire)
Snowflake Doubles Down on Python for Machine Learning and Application Development
The introduction of Snowpark, Snowflake’s developer framework, opened up a rich programming environment for data scientists, data engineers, and application developers to build scalable pipelines, applications, and machine learning (ML) workflows directly in Snowflake using their preferred languages and libraries. Snowflake is further extending what users can build with Snowpark for Python, making Python’s rich ecosystem of open-source packages and libraries seamlessly accessible in the Data Cloud.
With a highly secure Python sandbox, Snowpark for Python runs on the same Snowflake compute infrastructure as Snowflake pipelines and applications written in other languages. This provides Snowpark for Python with the same scalability, elasticity, security, and compliance benefits developers have come to expect when building with Snowflake. Developers now have the unique opportunity to streamline and modernize their data processing architecture by consolidating their Python-based data processing in Snowflake using Snowpark.
Additional updates complementing Snowpark for Python include:
- Snowflake Worksheets for Python, now in private preview, enables users to develop pipelines, ML models, and applications directly in Snowsight, Snowflake’s user interface, using Python and Snowpark’s DataFrame APIs for Python, streamlining development with code auto-complete, and the ability to productize custom logic in seconds.
- Snowflake’s Streamlit Integration, currently in development, brings Python-based application development directly into Snowflake, enabling users to build interactive applications, and securely share, iterate, and collaborate with business teams to increase the impact of development.
- Large Memory Warehouses, currently in development, empowers users to securely execute memory-intensive operations such as feature engineering and model training on large datasets using popular Python open-source libraries available through the Anaconda integration.
- SQL Machine Learning, starting with time-series forecasting now in private preview, empowers SQL users to embed ML-powered predictions into their everyday business intelligence and analytics to improve decision quality and speed.
Python’s robust syntax and rich ecosystem of open-source packages make it a popular choice for developers, and Snowflake’s continued partnership with Anaconda extends access to more Python packages seamlessly in Snowflake, with all code running in a highly secure sandboxed environment. The Snowpark Accelerated program has also seen continued growth in large part due to Snowflake’s Python advancements, with more partners building with Python to extend the power of the Data Cloud in their language of choice.
“At its core, Snowpark is all about extensibility, and Snowpark for Python provides us with the tools we need to work with data effectively in our programming language of choice,” said
Snowflake Increases Data Access for Faster, More Valuable Insights
Getting access to the right data quickly and efficiently is critical for improving developer productivity, building ML models with increased accuracy, and delivering more powerful applications. Snowflake’s enhancements enable teams to experiment faster, with more data at their fingertips, driving increased programming capabilities and deeper insights for users.
New innovations include:
- Streaming Data Support to eliminate the boundaries between streaming and batch pipelines with Snowpipe Streaming, now in private preview, for serverless ingestion of streaming data, and Materialized Tables, currently in development, which make it simple to transform streaming data declaratively.
- Iceberg Tables in Snowflake, currently in development, to enable users to work with Apache Iceberg, a popular open table format, in external storage while taking advantage of the ease-of-use, performance, and consistent governance of the Snowflake platform, simplifying overall data management and enabling architectural flexibility.
- External Tables for On-Premises Storage, now in private preview, to allow users to access their data in on-premises storage systems like Dell Technologies, Pure Storage, and more from Snowflake so they can benefit from the elasticity of the Data Cloud without moving this data.
“We are heavily investing in Python to make it easier for data scientists, data engineers, and application developers to build even more in the Data Cloud, without governance trade-offs,” said
Snowflake also announced the new Unistore workload, Native Applications Framework, Cybersecurity workload, and more at Snowflake Summit 2022.
Learn More:
- Learn more about the expanded capabilities of Snowpark for Python.
- Learn more about how customers are leveraging Applications and Data Science to drive value.
- View the Snowflake Summit 2022 keynotes live or on-demand, here.
- Stay on top of the latest news and announcements from Snowflake on LinkedIn and Twitter.
Forward Looking Statements
This press release contains express and implied forwarding-looking statements, including statements regarding (i) Snowflake’s business strategy, (ii) Snowflake’s products, services, and technology offerings, including those that are under development or not generally available, (iii) market growth, trends, and competitive considerations, and (iv) the integration, interoperability, and availability of Snowflake’s products with and on third-party platforms. These forward-looking statements are subject to a number of risks, uncertainties and assumptions, including those described under the heading “Risk Factors” and elsewhere in the Quarterly Reports on Form 10-Q and the Annual Reports on Form 10-K that Snowflake files with the
© 2022
About Snowflake
Snowflake enables every organization to mobilize their data with Snowflake’s Data Cloud. Customers use the Data Cloud to unite siloed data, discover and securely share data, and execute diverse analytic workloads. Wherever data or users live, Snowflake delivers a single data experience that spans multiple clouds and geographies. Thousands of customers across many industries, including 506 of the 2021 Forbes Global 2000 (G2K) as of
View source version on businesswire.com: https://www.businesswire.com/news/home/20220614005077/en/
Product PR Lead, Snowflake
press@snowflake.com
Source:
FAQ
What is Snowpark for Python launched by Snowflake?
How does Snowflake improve data access with its latest enhancements?
What companies are utilizing Snowflake's new features?
When was the Snowpark for Python announced?