Rocket Lab to Attempt First Mid-Air Helicopter Capture of the Electron Rocket During Next Mission
Rocket Lab has announced its first attempt to capture an Electron rocket mid-air using a helicopter during the upcoming "There and Back Again" mission. Scheduled for April 19, 2022, this launch will deploy 34 payloads, marking Rocket Lab's 26th Electron mission and bringing the total number of satellites launched to 146. The Sikorsky S-92 helicopter will attempt a complex recovery operation to secure the rocket stage as it returns to Earth, representing a significant step towards making Electron a reusable small launch vehicle.
- First attempt at mid-air helicopter capture of Electron rocket.
- Upcoming launch to deploy 34 payloads, increasing total launches to 146.
- Progress towards reusable launch vehicle technology could enhance future profitability.
- Complex recovery operation entails high risk of failure during mid-air capture.
For the first time,
The “There and Back Again” mission, Rocket Lab’s 26th Electron launch, will lift off from Pad A at
For the first time,
Catching a returning rocket stage mid-air as it returns from space is a highly complex operation that demands extreme precision. Several critical milestones must align perfectly to ensure a successful capture.
Recovery Mission Profile:
- Approximately an hour prior to lift-off, Rocket Lab’s Sikorsky S-92 will move into position in the capture zone, approximately 150 nautical miles off New Zealand’s coast, to await launch.
- At T+2:30 minutes after lift-off, Electron’s first and second stages will separate per a standard mission profile. Electron’s second stage will continue on to orbit for payload deployment and Electron’s first stage will begin its descent back to Earth reaching speeds of almost 8,300 km (5,150 miles) per hour. The stage will reach temperatures of around 2,400 degrees C (4,352 F) during its descent.
- After deploying a drogue parachute at 13 km (8.3 miles) altitude, the main parachute will be extracted at around 6 km (3.7 miles) altitude to dramatically slow the stage to 10 metres per second, or 36 km (22.3 miles) per hour.
- As the stage enters the capture zone, Rocket Lab’s helicopter will attempt to rendezvous with the returning stage and capture the parachute line via a hook.
-
Once the stage is captured and secured, the helicopter will transport it back to land where
Rocket Lab will conduct a thorough analysis of the stage and assess its suitability for reflight.
“We’re excited to enter this next phase of the Electron recovery program,” said
Payloads aboard the “There and Back Again” mission include:
Alba Orbital: A cluster of four pico-satellites will be deployed, including Alba Orbital’s own Unicorn-2 PocketQube satellites, as well as TRSI-2, TRSI-3, and MyRadar-1 satellites for Alba Orbital’s customers. Each small satellite carries a unique sensor designed to demonstrate innovative technologies on orbit. Unicorn-2 will be carrying an optical night-time imaging payload designed to monitor light pollution across the globe.
Astrix Astronautics: Astrix Astronautics is deploying the “Copia” system - a high-performance power generation system for CubeSats that aims to improve on power restraints typically seen in small satellites. The mission aims to demonstrate the high performance of Copia's novel design via -on-orbit testing with 1U solar arrays able to capture up to 200W.
Aurora Propulsion Technologies: The AuroraSat-1 also known as The Flying Object will deploy to low Earth orbit in a demonstration of the company’s proprietary propulsion devices and plasma brakes that provide efficient propulsion and deorbiting capabilities for small satellites. The CubeSat will validate the water-based propellant and mobility control of its Resistojets that can assist CubeSats with detumbling capabilities and propulsion-based attitude control. AuroraSat-1 will also test its deployable Plasma Brakes which combine a micro-tether with charged particles in space, or ionospheric plasma, to generate significant amounts of drag to deorbit the spacecraft safely at the end of its life.
E-Space: E-Space’s payload will consist of three demonstration satellites to validate the systems and technology for its sustainable satellite system. The satellites have small cross-sections, to decrease the risk of collision from the millions of untrackable space objects and will automatically de-orbit if any systems malfunction. Eventually, the satellites will sacrificially capture and deorbit small debris to burn up on re-entry, setting a new standard in space environmental management.
UNSEENLABS: BRO-6 is the sixth satellite of the Unseenlabs’ constellation, dedicated to the detection of radiofrequency signals. Thanks to its technology, the French company detects any vessel at sea, even those whose cooperative beacon is turned off. The launch of BRO-6 satellite will allow Unseenlabs to improve its revisit time and deliver more customers.
+ Images & Video Content
www.rocketlabusa.com/about-us/updates/link-to-rocket-lab-imagery-and-video/
+ FORWARD-LOOKING STATEMENTS
This press release may contain certain “forward-looking statements” within the meaning of the Private Securities Litigation Reform Act of 1995, Section 27A of the Securities Act of 1933, as amended, and Section 21E of the Securities Exchange Act of 1934, as amended. These forward-looking statements are based on Rocket Lab’s current expectations and beliefs concerning future developments and their potential effects. These forward-looking statements involve a number of risks, uncertainties (many of which are beyond Rocket Lab’s control), or other assumptions that may cause actual results or performance to be materially different from those expressed or implied by these forward-looking statements. Many factors could cause actual future events to differ materially from the forward-looking statements in this press release, including risks related to the global COVID-19 pandemic; risks related to government restrictions and lock-downs in
disasters and epidemics or pandemics; changes in governmental regulations including with respect to trade and export restrictions, or in the status of our regulatory approvals or applications; or other events that force us to cancel or reschedule launches, including customer contractual rescheduling and termination rights; risks that acquisitions may not be completed on the anticipated time frame or at all or do not achieve the anticipated benefits and results; and the other risks detailed from time to time in Rocket Lab’s filings with the
View source version on businesswire.com: https://www.businesswire.com/news/home/20220405005568/en/
+ Rocket Lab Media Contact
media@rocketlabusa.com
Source:
FAQ
What is Rocket Lab's upcoming mission scheduled for April 2022?
What is the significance of the mid-air helicopter capture for Rocket Lab?
How many payloads will Rocket Lab deploy in the April 2022 launch?
What is the stock symbol for Rocket Lab?