STOCK TITAN

Patriot Discovers New High-Grade Zone at the CV13 Spodumene Pegmatite, Corvette Property, Quebec, Canada

Rhea-AI Impact
(Moderate)
Rhea-AI Sentiment
(Neutral)
Tags
Rhea-AI Summary
Patriot Battery Metals announces the discovery of a new high-grade zone at the CV13 Spodumene Pegmatite. The zone contains lithium grades ranging from 2.46% to 5.03% Li2O. The company continues to drill westward from CV5 towards CV13 to test potential connectivity. Metallurgy results suggest that material from both CV13 and CV5 may be processed jointly. Assays are pending for the majority of drill holes completed in the summer-fall program.
Positive
  • The discovery of a new high-grade zone at CV13 could positively affect the stock price as it indicates the presence of valuable lithium deposits.
  • Metallurgy results suggest that material from both CV13 and CV5 could be processed together, potentially increasing efficiency and reducing costs.
  • The ongoing drilling program demonstrates the company's commitment to exploring and expanding its mineral resources.
Negative
  • The delay in delivering drill core samples to the laboratory may impact the timely release of results, potentially affecting investor sentiment.

VANCOUVER, BC, Oct. 18, 2023 /PRNewswire/ -  October 19, 2023 – Sydney, Australia

Highlights

  • Discovery of new high-grade zone (with sample ranges including 3 – 5% Li2O) near-surface at the CV13 Spodumene Pegmatite.
    • 12.7 m at 2.46% Li2O (73.3 m to 86.0 m), including 7.6 m at 3.82% Li2O (CV23–191).
    • 8.0 m at 2.86% Li2O (57.2 m to 65.2 m), including 4.3 m at 5.03% Li2O (CV23–195).
    • 10.2 m at 2.70% Li2O (56.3 m to 66.5 m), including 5.8 m at 4.48% Li2O (CV23–198)
    • 10.7 m at 2.79% Li2O (67.0 m to 77.7 m), including 7.3 m at 3.94% Li2O (CV23–200)
  • The CV13 Spodumene Pegmatite trend extends over an approximate 2.3 km strike length through multiple outcrop exposures, of which, approximately 1.1 km has now been traced continuously by drilling – remains open along strike at both ends and to depth.
  • With significant mineralization now delineated further west at CV5 and at CV13, there are now several options for the mining starter pit.
  • Company continues to drill westward from CV5 towards CV13 to test potential connectivity.
  • Thirty-seven (37) drill holes, totalling approximately 7,300 m, have been completed in 2023 through October 9 at the CV13 Spodumene Pegmatite.
  • Additional rig now coring for a total of eight (8) drill rigs currently active at site – four (4) at CV5, three (3) at CV13, and one (1) at CV9. Drilling is anticipated to ramp up further after the holidays with ten (10) drill rigs anticipated by mid January 2024.

Darren L. Smith, Company Vice President of Exploration, comments: "Drilling at CV13 has progressed steadily since our recommencement of activities in August, with results continuing to support the interpretation of an extensive, shallow-dipping and near-surface spodumene pegmatite dyke. The discovery announced today of a +3% Li2O high-grade zone at CV13, now traced over multiple drill holes, is reminiscent of the high-grade Nova Zone at CV5. As we continue to close the distance between CV5 and CV13 through drilling, this newly discovered high-grade zone at CV13, coupled with the large spodumene crystals observed (up to 1.3 m in drill core), supports the interpretation that both share the same "plumbing" system.  

Further highlights include;

  • Metallurgy results to date provide a strong indication that material from both the CV13 Spodumene Pegmatite and CV5 Spodumene Pegmatite may be processed jointly using the same design criteria and flowsheet, and therefore, processable at the same plant.
    • Fe2O3 contents of <0.70% consistently demonstrated in final spodumene concentrates produced from both the CV5 and CV13 pegmatites following heavy liquid separation (HLS) and magnetic separation at the bench scale.
  • Assays are pending for the vast majority of drill holes completed over the summer-fall program. The Company will update the market as material sets of assays return from the labs. The Company expects to provide an updated mineral resource estimate in mid-2024.

Patriot Battery Metals Inc. (the "Company" or "Patriot") (TSXV: PMET) (ASX: PMT) (OTCQX: PMETF) (FSE: R9GA) is pleased to announce core assays for the first series of drill holes completed at the CV13 Spodumene Pegmatite as part of the ongoing 2023 summer-fall drill program being completed at its wholly owned Corvette Property (the "Property" or "Project"), located in the Eeyou Istchee James Bay region of Quebec. At the Property, the CV13 Spodumene Pegmatite is located approximately 3.15 km along strike to the southwest of the CV5 Spodumene Pegmatite. The CV5 Spodumene Pegmatite, with a maiden mineral resource estimate of 109.2 Mt at 1.42% Li2O inferred1, is situated approximately 13.5 km south of the regional and all–weather Trans-Taiga Road and powerline infrastructure.

Core assay results from the first series of drill holes completed this year at the CV13 Spodumene Pegmatite have returned the highest-grade assays reported to date (Figure 1 and Figure 2, Table 1). Specifically, these drill holes have identified a newly discovered high-grade lithium zone – 12.7 m at 2.46% Li2O, including 7.6 m at 3.82% Li2O (CV23-191), 8.0 m at 2.86% Li2O, including 4.3 m at 5.03% Li2O (CV23-195), 10.2 m at 2.70% Li2O, including 5.8 m at 4.48% Li2O (CV23-198), and 10.7 m at 2.79% Li2O, including 7.3 m at 3.94% Li2O (CV23-200). Additionally, drill hole CV23-195 returned two (2) samples assaying greater than 6% Li2O, including 1.2 m at 6.41% Li2O.

The new high-grade zone at CV13 is located near-surface (~40-50 m vertical depth), and remains open in multiple directions with a current strike length of approximately 170 m. Additionally, in an adjacent drill hole (CV23-271), situated approximately 60 m to the west, an approximate 1.3 m long, inclusion-free, and cream-white spodumene crystal was intersected (Figure 3) – assays pending – and may represent an extension of this high-grade zone. Such high grades of lithium are not typical in Li-Cs-Ta ("LCT") pegmatite systems and this, coupled with the very large sizes of spodumene crystals, highlight the unique and world-class nature of the LCT pegmatite system at Corvette. 

The discovery of a new and near-surface high-grade zone at CV13 provides multiple opportunities, that the Company will investigate, for defining an initial production location(s) (i.e., mining starter pit) that is complimentary to the CV5 mineral resource. With significant mineralization now delineated further west at CV5 and at CV13, lake development at CV5 could come later in the mine schedule.

The principal spodumene pegmatite dyke at CV13 (the "upper" dyke) is geologically modelled to be shallowly dipping to the north, covering an extensive area, and remains open along strike at both ends and to depth. A cross-section of the western portion of the CV13 Spodumene Pegmatite's current geological model is presented in Figure 4. The mineralized trend at CV13 extends for approximately 2.3 km as defined by outcrop and drilling through 2022. The drill holes completed in 2023 along this trend have now confirmed a continuous, variably mineralized spodumene pegmatite extending along at least 1.1 km of this trend and remains open.

Pegmatite intersections of the upper dyke are up to 26 m (core length) over the thirty-seven (37) drill holes (~7,300 m) completed in 2023 through October 9. A "lower" pegmatite dyke, which also has a shallow and northerly dip, has been tested in multiple drill holes in 2023; however, remains of secondary focus at this time due to more variability in thickness and mineralization.

The very high grades of lithium in drill core returned from CV13 to date, coupled with the large spodumene crystals as well as similar textures and gangue mineralogy as CV5, supports the interpretation that both CV13 and CV5 share the same plumbing system and may potentially form one continuous pegmatite body subsurface. However, a significant amount of drill testing remains to be completed along this corridor to confirm this interpretation. Through September 18, 2023, drilling had closed the gap between the CV13 and CV5 spodumene pegmatites to approximately 3.15 km (Figure 5, see news release dated September 24, 2023).

CV13 Metallurgy

A heavy liquid separation (HLS) test program assessed the liberation and recovery characteristics of spodumene at different locations along the collective ~2.3-km trend that defines the CV13 Pegmatite (see news release dated July 4, 2023). The testwork returned very positive results with lithium recoveries ranging from 67% to 77% at an interpolated spodumene concentrate grade of 6.00% Li2O and <0.70% Fe2O3. Recoveries also remained strong on the lower grade samples, which is a testament to the coarse-grained nature of the spodumene making it more amenable to liberation. Collectively, the preliminary HLS results strongly indicate that a dense media separation (DMS) only operation at CV13 is applicable.

To date, the metallurgical data collected from CV5 and CV13 is highly encouraging and demonstrates that a DMS only flowsheet is applicable to both pegmatites. Further, the data suggests that both pegmatites could be jointly crushed and feed the same process plant, while maintaining high recoveries into a marketable spodumene concentrate of +5.5% Li2O.

Due to the road closures in western parts of the Eeyou Istchee James Bay extending significantly past the date in which the Company was able to re-commence drill operations at the Property, the delivery of drill core samples to the laboratory was significantly delayed. However, core samples from a large number of drill holes have now arrived at the laboratory with processing underway. Results will be reported in batches as received.

 

 

 

 

 

 

 

1 The CV5 mineral resource estimate (109.2 Mt at 1.42% Li2O and 160 ppm Ta2O5 inferred) is reported at a cut-off grade of 0.40% Li2O with effective date of June 25, 2023 (through drill hole CV23-190). Mineral resources are not mineral reserves as they do not have demonstrated economic viability.

 

Quality Assurance / Quality Control (QAQC)

A Quality Assurance / Quality Control protocol following industry best practices was incorporated into the program and included systematic insertion of quartz blanks and certified reference materials into sample batches at a rate of approximately 5%. Additionally, analysis of pulp-split and coarse-split sample duplicates were completed to assess analytical precision at different stages of the laboratory preparation process, and external (secondary) laboratory pulp-split duplicates were prepared at the primary lab for subsequent check analysis and validation.

All core samples collected were shipped to SGS Canada's laboratory in Val-d'Or, QC, for sample preparation (code PRP89 special) which includes drying at 105°C, crush to 90% passing 2 mm, riffle split 250 g, and pulverize 85% passing 75 microns. The pulps were shipped by air to SGS Canada's laboratory in Burnaby, BC, where the samples were homogenized and subsequently analyzed for multi-element (including Li and Ta) using sodium peroxide fusion with ICP-AES/MS finish (codes GE_ICP91A50 and GE_IMS91A50).

About the CV Lithium Trend

The CV Lithium Trend is an emerging spodumene pegmatite district discovered by the Company in 2017 and is interpreted to span more than 50 kilometres across the Corvette Property. The core area includes the approximate 4.35 km long CV5 Spodumene Pegmatite, which hosts a maiden mineral resource estimate of 109.2 Mt at 1.42% Li2O inferred1.

To date, seven (7) distinct clusters of lithium pegmatite have been discovered across the Corvette Property – CV4, CV5, CV8, CV9, CV10, CV12, and CV13. Given the proximity of some pegmatite outcrops to each other, as well as the shallow till cover in the area, it is probable that some of the outcrops may reflect a discontinuous surface exposure of a single, larger pegmatite "outcrop" subsurface. Further, the high number of well-mineralized pegmatites along the trend indicate a strong potential for a series of relatively closely spaced/stacked, sub-parallel, and sizable spodumene-bearing pegmatite bodies, with significant lateral and depth extent, to be present.

Qualified/Competent Person

The information in this news release that relates to exploration results for the Corvette Property is based on, and fairly represents, information compiled by Mr. Darren L. Smith, M.Sc., P.Geo., who is a Qualified Person as defined by National Instrument 43-101, and member in good standing with the Ordre des Géologues du Québec (Geologist Permit number 01968), and with the Association of Professional Engineers and Geoscientists of Alberta (member number 87868). Mr. Smith has reviewed and approved the technical information in this news release.

Mr. Smith is Vice President of Exploration for Patriot Battery Metals Inc. and holds common shares and options in the Company.

Mr. Smith has sufficient experience, which is relevant to the style of mineralization, type of deposit under consideration, and to the activities being undertaken to qualify as a Competent Person as described by the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (the JORC Code). Mr. Smith consents to the inclusion in this news release of the matters based on his information in the form and context in which it appears.

About Patriot Battery Metals Inc.

Patriot Battery Metals Inc. is a hard-rock lithium exploration company focused on advancing its district-scale 100% owned Corvette Property located in the Eeyou Istchee James Bay region of Quebec, Canada, and proximal to regional road and powerline infrastructure. The Corvette Property hosts the CV5 Spodumene Pegmatite with a maiden mineral resource estimate of 109.2 Mt at 1.42% Li2O inferred1 and ranks as the largest lithium pegmatite resource in the Americas based on contained lithium carbonate equivalent (LCE), and one of the top 10 largest lithium pegmatite resources in the world. Additionally, the Corvette Property hosts multiple other spodumene pegmatite clusters that remain to be drill tested, as well as more than 20 km of prospective trend that remain to be assessed.

1 The CV5 mineral resource estimate (109.2 Mt at 1.42% Li2O and 160 ppm Ta2O5 inferred) is reported at a cut-off grade of 0.40% Li2O with effective date of June 25, 2023 (through drill hole CV23-190). Mineral resources are not mineral reserves as they do not have demonstrated economic viability.

 

For further information, please contact us at info@patriotbatterymetals.com or by calling +1 (604) 279-8709, or visit www.patriotbatterymetals.com. Please also refer to the Company's continuous disclosure filings, available under its profile at www.sedarplus.ca and www.asx.com.au, for available exploration data.

This news release has been approved by the Board of Directors.

"BLAIR WAY"                                   
Blair Way, President, CEO, & Director        

Disclaimer for Forward-looking Information

This news release contains "forward-looking information" or "forward-looking statements" within the meaning of applicable securities laws and other statements that are not historical facts. Forward-looking statements are included to provide information about management's current expectations and plans that allows investors and others to have a better understanding of the Company's business plans and financial performance and condition.

All statements, other than statements of historical fact included in this news release, regarding the Company's strategy, future operations, financial position, prospects, plans and objectives of management are forward-looking statements that involve risks and uncertainties. Forward-looking statements are typically identified by words such as "plan", "expect", "estimate", "intend", "anticipate", "believe", or variations of such words and phrases or statements that certain actions, events or results "may", "could", "would", "might" or "will" be taken, occur or be achieved. In particular and without limitation, this news release contains forward-looking statements pertaining to the summer-fall drilling program and the completion and publication of Company's technical report comprising the maiden mineral resource estimate in respect of the Corvette Property.  

Forward-looking information is based upon certain assumptions and other important factors that, if untrue, could cause the actual results, performance or achievements of the Company to be materially different from future results, performance or achievements expressed or implied by such information or statements. There can be no assurance that such information or statements will prove to be accurate. Key assumptions upon which the Company's forward-looking information is based include the total funding required to complete the development of the Company's lithium mineral project at the Corvette Property (the "Corvette Project"), including the drilling program.

Readers are cautioned that the foregoing list is not exhaustive of all factors and assumptions which may have been used. Forward-looking statements are also subject to risks and uncertainties facing the Company's business, any of which could have a material adverse effect on the Company's business, financial condition, results of operations and growth prospects. Some of the risks the Company faces and the uncertainties that could cause actual results to differ materially from those expressed in the forward-looking statements include, among others, the ability to execute on plans relating to the Company's Corvette Project, including the timing thereof. In addition, readers are directed to carefully review the detailed risk discussion in the Company's most recent Annual Information Form filed on SEDAR+, which discussion is incorporated by reference in this news release, for a fuller understanding of the risks and uncertainties that affect the Company's business and operations.

Although the Company believes its expectations are based upon reasonable assumptions and has attempted to identify important factors that could cause actual actions, events or results to differ materially from those described in forward-looking statements, there may be other factors that cause actions, events or results not to be as anticipated, estimated or intended. There can be no assurance that forward-looking information will prove to be accurate, as actual results and future events could differ materially from those anticipated in such information. As such, these risks are not exhaustive; however, they should be considered carefully. If any of these risks or uncertainties materialize, actual results may vary materially from those anticipated in the forward-looking statements found herein. Due to the risks, uncertainties and assumptions inherent in forward-looking statements, readers should not place undue reliance on forward-looking statements.

Forward-looking statements contained herein are presented for the purpose of assisting investors in understanding the Company's business plans, financial performance and condition and may not be appropriate for other purposes.

The forward-looking statements contained herein are made only as of the date hereof. The Company disclaims any intention or obligation to update or revise any forward-looking statements, whether as a result of new information, future events or otherwise, except to the extent required by applicable law. The Company qualifies all of its forward-looking statements by these cautionary statements.

Competent Person Statement (ASX Listing Rule 5.22)

The mineral resource estimate in this release was reported by the Company in accordance with ASX Listing Rule 5.8 on July 31, 2023. The Company confirms it is not aware of any new information or data that materially affects the information included in the previous announcements and that all material assumptions and technical parameters underpinning the estimates in the previous announcements continue to apply and have not materially changed. 

Appendix 1 – JORC Code 2012 Table 1 information required by ASX Listing Rule 5.8.2

Section 1 – Sampling Techniques and Data

     Criteria

JORC Code explanation

Commentary

Sampling
techniques

  • Nature and quality of sampling (eg cut
    channels, random chips, or specific
    specialized industry standard
    measurement tools appropriate to the
    minerals under investigation, such as
    down hole gamma sondes, or handheld
    XRF instruments, etc). These examples
    should not be taken as limiting the 
    broad meaning of sampling.
  • Include reference to measures taken to
    ensure sample representivity and the
    appropriate calibration of any
    measurement tools or systems used.
  • Aspects of the determination of
    mineralization that are Material to the
    Public Report.
  • In cases where 'industry standard' work
    has been done this would be relatively
    simple (eg 'reverse circulation drilling
    was used to obtain 1 m samples from
    which 3 kg was pulverized to produce a
    30 g charge for fire assay'). In other
    cases more explanation may be
    required, such as where there is coarse
    gold that has inherent sampling
    problems.Unusual commodities or
    mineralization types (eg submarine
    nodules) may warrant disclosure of
    detailed information.

 

  • Core sampling protocols meet industry standard
    practices.
  • Core sampling is guided by lithology as determined
    during geological logging (i.e., by a geologist). All
    pegmatite intervals are sampled in their entirety (half-
    core), regardless if spodumene mineralization is noted
    or not (in order to ensure an unbiased sampling
    approach) in addition to ~1 to 3 m of sampling into the
    adjacent host rock (dependent on pegmatite interval
    length) to "bookend" the sampled pegmatite.
  • The minimum individual sample length is typically 0.3-
    0.5 m and the maximum sample length is typically
    2.0 m. Targeted individual pegmatite sample lengths
    are 1.0 m.
  • All drill core is oriented to maximum foliation prior to
    logging and sampling and is cut with a core saw into
    half-core pieces, with one half-core collected for assay,
    and the other half-core remaining in the box for
    reference.
  • Core samples collected from drill holes were shipped to
    SGS Canada's laboratory in
    Val-d'Or, QC, for sample
    preparation (code PRP89 special) which included
    drying at 105°C, crush to 90% passing 2 mm, riffle split
    250 g, and pulverize 85% passing 75 microns. Core
    sample pulps were shipped by air to SGS Canada's
    laboratory in Burnaby, BC, where the samples were
    homogenized and subsequently analyzed for multi-
  • element (including Li and Ta) using sodium peroxide
    fusion with ICP-AES/MS finish (codes GE_ICP91A50
    and GE_IMS91A50).

 

Drilling techniques

  • Drill type (eg core, reverse circulation,
    open-hole hammer, rotary air blast, 
    auger, Bangka, sonic, etc) and details
    (eg core diameter, triple or standard
    tube, depth of diamond tails, face-
    sampling bit or other type, whether core
    is oriented and if so, by what method,
    etc).

 

  • NQ size core diamond drilling was completed for all
    holes. Core was not oriented.

 

Drill sample
recovery

  • Method of recording and assessing core
    and chip sample recoveries and results
    assessed.
  • Measures taken to maximize sample
    recovery and ensure representative
    nature of the samples.
  • Whether a relationship exists between
    sample recovery and grade and whether
    sample bias may have occurred due to
    preferential loss/gain of fine/coarse
    material.

 

  • All drill core was geotechnically logged following
    industry standard practices, and includes TCR, RQD,
    ISRM, and Q-Method. Core recovery is very good and
    typically exceeds 90%.

 

Logging

  • Whether core and chip samples have
    been geologically and geotechnically
    logged to a level of detail to support
  •  appropriate Mineral Resource
    estimation, mining studies and
    metallurgical studies.
  • Whether logging is qualitative or
    quantitative in nature. Core (or costean,
    channel, etc) photography.
  • The total length and percentage of the
    relevant intersections logged.

 

  • Upon receipt at the core shack, all drill core is pieced
    together, oriented to maximum foliation, metre marked,
    geotechnically logged (including structure), alteration
    logged, geologically logged, and sample logged on an
    individual sample basis. Core box photos are also
    collected of all core drilled, regardless of perceived
    mineralization. Specific gravity measurements of
    pegmatite are also collected at systematic intervals for
    all pegmatite drill core using the water immersion
    method, as well as select host rock drill core.
  • The logging is qualitative by nature, and includes
    estimates of spodumene grain size, inclusions, and
    model mineral estimates.
  • These logging practices meet or exceed current industry
    standard practices.

 

Sub-sampling
techniques and
sample preparation

  • If core, whether cut or sawn and
    whether quarter, half or all core taken.
  • If non-core, whether riffled, tube
    sampled, rotary split, etc and whether
    sampled wet or dry.
  • For all sample types, the nature, quality
    and appropriateness of the sample
    preparation technique.
  • Quality control procedures adopted for
    all sub-sampling stages to maximize
    representivity of samples.
  • Measures taken to ensure that the
    sampling is representative of the in situ
    material collected, including for instance results for
    field duplicate/second-half sampling.
  • Whether sample sizes are appropriate to
    the grain size of the material being
    sampled.

 

  • Drill core sampling follows industry best practices.
    Drill core was saw-cut with half-core sent for
    geochemical analysis and half-core remaining in the
    box for reference. The same side of the core was
    sampled to maintain representativeness.
  • Sample sizes are appropriate for the material being
    assayed.
  • A Quality Assurance / Quality Control (QAQC)
    protocol following industry best practices was
    incorporated into the program and included systematic
    insertion of quartz blanks and certified reference
    materials (
    CRMs) into sample batches at a rate of
    approximately 5% each. Additionally, analysis of pulp-
    split and course-split sample duplicates were completed
    to assess analytical precision at different stages of the
    laboratory preparation process, and external
    (secondary) laboratory pulp-split duplicates were
    prepared at the primary lab for subsequent check
    analysis and validation at a secondary lab.
  • All protocols employed are considered appropriate for
    the sample type and nature of mineralization and are
    considered the optimal approach for maintaining
    representativeness in sampling.

 

Quality of assay
data and laboratory
tests

  • The nature, quality and appropriateness
    of the assaying and laboratory
    procedures used and whether the
    technique is considered partial or total.
  • For geophysical tools, spectrometers,
    handheld XRF instruments, etc, the
    parameters used in determining the
    analysis including instrument make and
    model, reading times, calibrations
    factors applied and their derivation, etc.
  • Nature of quality control procedures
    adopted (eg standards, blanks,
    duplicates, external laboratory checks)
    and whether acceptable levels of
    accuracy (ie lack of bias) and precision
    have been established.

 

  • Core samples collected from drill holes were shipped to
    SGS Canada's laboratory in
    Val-d'Or, QC, for standard
    sample preparation (code PRP89 special) which
    included drying at 105°C, crush to 90% passing 2 mm,
    riffle split 250 g, and pulverize 85% passing 75
    microns. Core sample pulps were shipped by air to SGS
    Canada's laboratory in Burnaby, BC, where the samples
    were homogenized and subsequently analyzed for
    multi-element (including Li and Ta) using sodium
    peroxide fusion with ICP-AES/MS finish (codes
    GE_ICP91A50 and GE_IMS91A50).
  • The Company relies on both its internal QAQC
    protocols (systematic use of blanks, certified reference
    materials, and external checks), as well as the
    laboratory's internal QAQC.
  • All protocols employed are considered appropriate for
    the sample type and nature of mineralization and are
    considered the optimal approach for maintaining
    representativeness in sampling.

 

Verification of
sampling and
assaying

  • The verification of significant
    intersections by either independent or
    alternative company personnel.
  • The use of twinned holes.
  • Documentation of primary data, data
    entry procedures, data verification, data
    storage (physical and electronic)
    protocols.
  • Discuss any adjustment to assay data.

 

  • Intervals are reviewed and compiled by the VP
    Exploration and Project Managers prior to disclosure,
    including a review of the Company's internal QAQC
    sample analytical data.
  • Data capture utilizes MX Deposit software whereby
    core logging data is entered directly into the software
    for storage, including direct import of laboratory
    analytical certificates as they are received. The
    Company employs various on-site and post QAQC
    protocols to ensure data integrity and accuracy.
  • Adjustments to data include reporting lithium and
    tantalum in their oxide forms, as it is reported in
    elemental form in the assay certificates. Formulas used
    are Li2O = Li x 2.153, and Ta2O5 = Ta x 1.221.

 

Location of data
points

  • Accuracy and quality of surveys used to
    locate drill holes (collar and down-hole
    surveys), trenches, mine workings and
    other locations used in Mineral
    Resource estimation.
  • Specification of the grid system used.
  • Quality and adequacy of topographic
    control.

 

  • Each drill hole's collar has been surveyed with a RTK
    Trimble Zephyr 3 (or temporarily using a handheld
    GPS).
  • The coordinate system used is UTM NAD83 Zone 18.
  • The Company completed a property-wide LiDAR and
    orthophoto survey in August 2022, which provides
    high-quality topographic control.
  • The quality and accuracy of the topographic controls
    are considered adequate for advanced stage exploration
    and development, including mineral resource
    estimation.

 

Data spacing and
distribution

 

  • Data spacing for reporting of
    Exploration Results.
  • Whether the data spacing and
    distribution is sufficient to establish the
    degree of geological and grade
    continuity appropriate for the Mineral
    Resource and Ore Reserve estimation
    procedure(s) and classifications applied.
  • Whether sample compositing has been
    applied.

 

  • Drill hole collar spacing is dominantly grid based at ~50
    to 100 m. However, orientations of drill holes vary
    widely from near-vertical to -45° in dip and over a 200°
    range in azimuth. Subsurface pegmatite pierce points
    will vary based on angle of the drill hole and dip of the
    pegmatite body.
  • It is interpreted that the drill spacing will be sufficient
    to support a mineral resource estimate.
  • Core sample lengths typically range from 0.5 to 1.5 m
    and average ~1 m. Sampling is continuous within all
    pegmatite encountered in the drill hole.
  • Sample compositing has not been applied

 

Orientation of data
in relation to
geological structure

  • Whether the orientation of sampling
    achieves unbiased sampling of possible
    structures and the extent to which this
    is known, considering the deposit type.
  • If the relationship between the drilling
    orientation and the orientation of key
    mineralized structures is considered to
    have introduced a sampling bias, this
    should be assessed and reported if
    material.

 

  • No sampling bias is anticipated based on structure
    within the mineralized body.
  • The principal mineralized body is relatively
    undeformed and very competent, although likely has
    some meaningful structural control.
  • At CV13, the "upper" pegmatite body has a shallow
    northerly dip and is coincident with a regional flexure.

 

Sample security

  • The measures taken to ensure sample
    security.

 

  • Samples were collected by Company staff or its
    consultants following specific protocols governing
    sample collection and handling. Core samples were
    bagged, placed in large supersacs for added security,
    palleted, and shipped directly to Val-d'Or, QC, being
    tracked during shipment along with Chain of Custody.
    Upon arrival at the laboratory, the samples were cross-
    referenced with the shipping manifest to confirm all
    samples were accounted for. At the laboratory, sample
    bags are evaluated for tampering.

 

Audits or reviews

  • The results of any audits or reviews of
    sampling techniques and data.

 

  • A review of the sample procedures for the Company's
    2021 fall drill program (CF21-001 to 004) and 2022
    winter drill program (CV22-015 to 034) was completed
    by an Independent Competent Person and deemed
    adequate and acceptable to industry best practices
    (discussed in a technical report titled "NI 43-101
    Technical Report on the Corvette Property, Quebec,
    Canada", by Alex Knox, M.Sc., P.Geol., Issue Date of
    June 27th, 2022.)
  • A review of the sample procedures through the
    Company's 2023 winter drill program was completed
    by an independent Competent Person with respect to the
    CV5 Pegmatite's maiden mineral resource estimate and
    deemed adequate and acceptable to industry best
    practices (discussed in a technical report titled " NI
    43–101 Technical Report, Mineral resource estimate for
    the CV5 Pegmatite, Corvette Property" by Todd
    McCracken, P.Geo., of BBA Engineering Ltd., and
    Ryan Cunningham, M.Eng., P.Eng., of Primero Group
    Americas Inc., Effective Date of June 25, 2023, and
    Issue Date of September 8, 2023.
  • Additionally, the Company continually reviews and
    evaluates its procedures in order to optimize and ensure
    compliance at all levels of sample data collection and
    handling.

 

 

Section 2 – Reporting of Exploration Results

Criteria

JORC Code explanation

Commentary

Mineral tenement
and land tenure

status

  • Type, reference name/number, location
    and ownership including agreements or
    material issues with third parties such as
    joint ventures, partnerships, overriding
    royalties, native title interests, historical
    sites, wilderness or national park and
    environmental settings.
  • The security of the tenure held at the
    time of reporting along with any known
    impediments to obtaining a licence to
    operate in the area.

 

  • The Corvette Property is comprised of 417 CDC claims
    located in the James Bay Region of Quebec, with
    Patriot Battery Metals Inc. the registered title holder for
    all of the claims. The Property's northern border is
    located within approximately 6 km to the south of the
    Trans-Taiga Road and powerline infrastructure
    corridor. At the Property, the CV13 Spodumene
    Pegmatite is located approximately 3.15 km along
    strike to the southwest of the CV5 Spodumene
    Pegmatite. The CV5 Spodumene Pegmatite is situated
    approximately 13.5 km south of the regional and all-
    weather Trans-Taiga Road and powerline
    infrastructure.
  • The Company holds 100% interest in the Property
    subject to various royalty obligations depending on
    original acquisition agreements. DG Resources
    Management holds a 2% NSR (no buyback) on 76
    claims, D.B.A. Canadian Mining House holds a 2%
    NSR on 50 claims (half buyback for $2M) and Osisko
    Gold Royalties holds a sliding scale NSR of 1.5-3.5%
    on precious metals, and 2% on all other products, over
    111 claims. The vast majority of the CV13 Spodumene
    Pegmatite, as is currently delineated, is not subject to a
    royalty.
  • The Property does not overlap any atypically sensitive
    environmental areas or parks, or historical sites to the
    knowledge of the Company. There are no known
    hinderances to operating at the Property, apart from the
    goose harvesting season (typically mid-April to mid-
    May) where the communities request helicopter flying
    not be completed, and potentially wildfires depending
    on the season, scale, and location.
  • Claim expiry dates range from September 2024 to
    September 2026. 

 

Exploration done
by other parties

  • Acknowledgment and appraisal of
    exploration by other parties.

 

  • No core assay results from other parties are disclosed
    herein.
  • The most recent independent Property review was a
    technical report titled "NI 43-101 Technical Report,
    Mineral Resource Estimate for the CV5 Pegmatite,
    Corvette Property, James Bay Region, Québec,
    Canada", by Todd McCracken, P.Geo., of BBA
    Engineering Ltd., and Ryan Cunningham, M.Eng.,
    P.Eng., of Primero Group Americas Inc., Effective Date
    of June 25, 2023, and Issue Date of September 8, 2023.

 

Geology

  • Deposit type, geological setting and
    style of mineralization.

 

  • The Property overlies a large portion of the Lac Guyer
    Greenstone Belt, considered part of the larger La
    Grande River Greenstone Belt and is dominated by
    volcanic rocks metamorphosed to amphibolite facies.
    The claim block is dominantly host to rocks of the
    Guyer Group (amphibolite, iron formation,
    intermediate to mafic volcanics, peridotite, pyroxenite,
    komatiite, as well as felsic volcanics). The amphibolite
    rocks that trend east-west (generally steeply south
    dipping) through this region are bordered to the north
    by the Magin Formation (conglomerate and wacke) and
    to the south by an assemblage of tonalite, granodiorite,
    and diorite, in addition to metasediments of the Marbot
    Group (conglomerate, wacke). Several regional-scale
    Proterozoic gabbroic dykes also cut through portions of
    the Property (Lac Spirt Dykes, Senneterre Dykes).
  • The geological setting is prospective for gold, silver,
    base metals, platinum group elements, and lithium over
    several different deposit styles including orogenic gold
    (Au), volcanogenic massive sulfide (Cu, Au, Ag),
    komatiite-ultramafic (Au, Ag, PGE, Ni, Cu, Co), and
    pegmatite (Li, Ta).
  • Exploration of the Property has outlined three primary
    mineral exploration trends crossing dominantly east-
    west over large portions of the Property – Golden Trend
    (gold), Maven Trend (copper, gold, silver), and CV
    Trend (lithium, tantalum). The CV5 and CV13
    spodumene pegmatites are situated within the CV
    Trend. Lithium mineralization at the Property,
    including at CV5 and CV13, is observed to occur within
    quartz-feldspar pegmatite, which may be exposed at
    surface as high relief 'whale-back' landforms. The
    pegmatite is often very coarse-grained and off-white in
    appearance, with darker sections commonly composed
    of mica and smoky quartz, and occasional tourmaline.
  • The lithium pegmatites at Corvette are categorized as
    LCT Pegmatites. Core assays and ongoing
    mineralogical studies, coupled with field mineral
    identification and assays, indicate spodumene as the
    dominant lithium-bearing mineral on the Property, with
    no significant petalite, lepidolite, lithium-phosphate
    minerals, or apatite present. The pegmatites also carry
    significant tantalum values with tantalite indicated to be
    the mineral phase.

 

Drill hole
Information

  • A summary of all information material
    to the understanding of the exploration
    results including a tabulation of the
    following information for all Material
    drill holes:
    • easting and northing of the drill hole
      collar
    • elevation or RL (Reduced Level –
      elevation above sea level in metres) of
      the drill hole collar
    • dip and azimuth of the hole
    • down hole length and interception
      depth
    • hole length.
  • If the exclusion of this information is
    justified on the basis that the
    information is not Material and this
    exclusion does not detract from the
    understanding of the report, the
    Competent Person should clearly
    explain why this is the case.

 

  • Drill hole attribute information is included in Table 2
    herein.  
  • Pegmatite intersections of <2 m are not typically
    presented as they are considered insignificant.

 

Data aggregation
methods

  • In reporting Exploration Results,
    weighting averaging techniques,
    maximum and/or minimum grade
    truncations (eg cutting of high grades)
    and cut-off grades are usually Material
    and should be stated.
  • Where aggregate intercepts incorporate
    short lengths of high grade results and
    longer lengths of low grade results, the
    procedure used for such aggregation
    should be stated and some typical
    examples of such aggregations should
    be shown in detail.
  • The assumptions used for any reporting
    of metal equivalent values should be
    clearly stated.

 

  • Length weighted averages were used to calculate grade
    over width.
  • No specific grade cap or cut-off was used during grade
    width calculations. The lithium and tantalum average of
    the entire pegmatite interval is calculated for all
    pegmatite intervals over 2 m core length, as well as
    higher grade zones at the discretion of the geologist.
    Pegmatites have inconsistent mineralization by nature,
    resulting in some intervals having a small number of
    poorly mineralized samples included in the calculation.
    Non-pegmatite internal dilution is limited to typically
    <3 m where relevant and intervals indicated when
    assays are reported.
  • No metal equivalents have been reported.

 

Relationship
between
mineralization

widths and intercept
lengths

  • These relationships are particularly
    important in the reporting of 
    Exploration Results.
  • If the geometry of the mineralization
    with respect to the drill hole angle is
    known, its nature should be reported.
  • If it is not known and only the down
    hole lengths are reported, there should
    be a clear statement to this effect (eg
    'down hole length, true width not
    known').

 

  • Geological modelling is ongoing on a hole-by-hole
    basis as CV13 is drilled. However, current
    interpretation supports an upper and lower pegmatite
    body, each trending sub-parallel to each other with a
    shallow northerly dip (collectively, the 'CV13
    Spodumene Pegmatite')
  • All reported widths are core length. True widths are not
    calculated for each hole due to the relatively wide drill
    spacing at this stage of delineation and the typical
    irregular nature of pegmatite, as well as the varied drill
    hole orientations. As such, true widths may vary widely
    from hole to hole.

 

Diagrams

  • Appropriate maps and sections (with
    scales) and tabulations of intercepts
    should be included for any significant
    discovery being reported These should
    include, but not be limited to a plan
    view of drill hole collar locations and
    appropriate sectional views.

 

  • Please refer to the figures included herein as well as
    those posted on the Company's website.

 

Balanced reporting

  • Where comprehensive reporting of all
    Exploration Results is not practicable,
    representative reporting of both low and
    high grades and/or widths should be
    practiced to avoid misleading reporting
    of Exploration Results.

 

  • Please refer to the table(s) included herein as well as
    those posted on the Company's website.
  • Results for pegmatite intervals <2 m are not reported.

 

Other substantive
exploration data

  • Other exploration data, if meaningful
    and material, should be reported
    including (but not limited to): 
    geological observations; geophysical
    survey results; geochemical survey
    results; bulk samples – size and method
    of treatment; metallurgical test results;
    bulk density, groundwater,
    geotechnical and rock characteristics;
    potential deleterious or contaminating
    substances.

 

  • The Company is currently completing baseline
    environmental work over the CV5 and CV13 pegmatite
    area. No endangered flora or fauna have been
    documented over the Property to date, and several sites
    have been identified as potentially suitable for mine
    infrastructure.
  • The Company has completed a bathymetric survey over
    the shallow glacial lake which overlies a portion of the
    CV5 Spodumene Pegmatite. The lake depth ranges
    from <2 m to approximately 18 m, although the
    majority of the CV5 Spodumene Pegmatite, as
    delineated to date, is overlain by typically <2 to 10 m of
    water.
  • The Company has completed preliminary metallurgical
    testing comprised of HLS and magnetic testing, which
    has produced 6+% Li2O spodumene concentrates at
    >70% recovery on both CV5 and CV13 pegmatite
    material, indicating DMS as a viable primary process
    approach, and that both CV5 and CV13 could
    potentially feed the same process plant. A DMS test on
    CV5 Spodumene Pegmatite material returned a
    spodumene concentrate grading 5.8% Li2O at 79%
    recovery, strongly indicating potential for a DMS only
    operation to be applicable.
  • Various mandates required for advancing the Project
    towards economic studies have been initiated, including
    but not limited to, environmental baseline, metallurgy,
    geomechanics, hydrogeology, hydrology, stakeholder
    engagement, geochemical characterization, as well as
    transportation and logistical studies.

 

Further work

  • The nature and scale of planned further
    work (eg tests for lateral extensions or
    depth extensions or large-scale step-out
    drilling).
  • Diagrams clearly highlighting the areas
    of possible extensions, including the
    main geological interpretations and
    future drilling areas, provided this
    information is not commercially
    sensitive.

 

  • The Company intends to continue drilling the
    pegmatites of the Corvette Property, focused on the
    CV5 Spodumene Pegmatite and adjacent subordinate
    lenses, as well as the CV13 Spodumene Pegmatite. At
  •  CV5, mineralization remains open along strike at both
    ends, and to depth along a significant portion of its
    length. At CV13, mineralization remains open along
    strike at both ends, and to depth.

 

 

Cision View original content to download multimedia:https://www.prnewswire.com/news-releases/patriot-discovers-new-high-grade-zone-at-the-cv13-spodumene-pegmatite-corvette-property-quebec-canada-301961516.html

SOURCE Patriot Battery Metals Inc

FAQ

What is the significance of the discovery at CV13?

The discovery of a new high-grade zone at CV13 indicates the presence of valuable lithium deposits.

What are the metallurgy results for CV13 and CV5?

Metallurgy results suggest that material from both CV13 and CV5 could be processed jointly, potentially increasing efficiency and reducing costs.

What is the status of the ongoing drilling program?

The company continues to drill westward from CV5 towards CV13 to test potential connectivity.

Are there any pending assays?

Assays are pending for the majority of drill holes completed in the summer-fall program.

PATRIOT BATTERY METALS

OTC:PMETF

PMETF Rankings

PMETF Latest News

PMETF Stock Data

285.74M
89.74M
2.32%
5.05%
Other Industrial Metals & Mining
Basic Materials
Link
United States of America
Vancouver