STOCK TITAN

Lawrence J. Ellison Institute for Transformative Medicine of USC Explores Breakthrough Tissue "Fingerprints" Concept For Cancer Diagnostics Using Oracle Cloud Technology

Rhea-AI Impact
(Neutral)
Rhea-AI Sentiment
(Neutral)
Tags
Rhea-AI Summary

The Lawrence J. Ellison Institute for Transformative Medicine and Oracle have pioneered a two-step predictive algorithm to enhance cancer diagnostics, specifically for breast cancer. This innovative technique uses under 1,000 annotated pathology slides to train the algorithm, achieving high diagnostic accuracy in classifying tumors' ER/PR/HER2 status. The method utilizes tissue 'fingerprints' to recognize tumor patterns, demonstrating accuracy metrics of 0.89 AUC (ER), 0.81 AUC (PR), and 0.79 AUC (HER2). This research, supported by Oracle Cloud technology, aims to improve diagnostic efficiency and access, potentially benefiting underserved regions.

Positive
  • Achieved high diagnostic accuracy with AUC metrics: 0.89 (ER), 0.81 (PR), 0.79 (HER2).
  • Utilized fewer than 1,000 annotated pathology slides for training.
  • Pioneered a two-step technique for improved machine learning in cancer diagnostics.
  • Potentially democratizes cancer diagnosis by enhancing efficiency and access in underserved regions.
Negative
  • None.

LOS ANGELES and REDWOOD SHORES, Calif., July 9, 2020 /PRNewswire/ -- The Lawrence J. Ellison Institute for Transformative Medicine of USC ("Ellison Institute") and Oracle reveal a promising two-step technique to train a high-confidence predictive algorithm for enhanced cancer diagnostics. The study uses novel tissue "fingerprints"—discriminating microscopic hematoxylin and eosin (H&E) histologic features—of tumors paired with correct diagnoses to facilitate deep learning in the classification of breast cancer ER/PR/HER2 status.

The approach was able to achieve unprecedented diagnostic accuracy for an algorithm of its type and purpose, while using less than a thousand annotated breast cancer pathology slides. The findings suggest that the algorithm's ability to make correlations between a tumor's architectural pattern and a correct diagnosis can ultimately help clinicians determine how a tumor will behave to a given treatment. 

The study was facilitated by Oracle for Research, Oracle's global program that provides selected researchers with access to Oracle Cloud technology, consulting and support, and participation in the Oracle research user community.

The research appears in Scientific Reports.

Challenges of medical machine learning
The challenge of developing artificial intelligence (AI) tools to diagnose cancer is that machine learning algorithms require clinically annotated data from tens of thousands of patients to analyze before they can recognize meaningful relationships in the data with consistency and high confidence. An ideal size dataset is nearly impossible to gather in cancer pathology.  Researchers training computers to diagnose cancer typically only have access to hundreds or low thousands of pathology slides annotated with correct diagnoses.

To overcome this limitation, the Ellison Institute scientists introduced a two-step process of priming the algorithm to identify unique patterns in cancerous tissue before teaching it the correct diagnoses.

"If you train a computer to reproduce what a person knows how to do, it's never going to get far beyond human performance," said lead author Rishi Rawat, PhD. "But if you train it on a task 10 times harder than anything a person could do you give it a chance to go beyond human capability. With tissue fingerprinting, we can train a computer to look through thousands of tumor images and recognize the visual features to identify an individual tumor. Through training, we have essentially evolved a computer eye that's optimized to look at cancer patterns."

The first step in the process introduces the concept of tissue "fingerprints," or distinguishing architectural patterns in a tumor's tissue, that an algorithm can use to discriminate between samples because no two patients' tumors are identical.  These fingerprints are the result of biological variations such as the presence of signaling molecules and receptors that influence the 3D organization of a tumor. The study shows that AI spotted these fine, structural differentiations on pathology slides with greater accuracy and reliability than the human eye, and was able to recognize these variations without human guidance.

In this study, the research team took digital pathology images, split them in half and prompted a machine learning algorithm to pair them back together based on their molecular fingerprints.  This practice showcased the algorithm's ability to group "same" and "different" pathology slides without paired diagnoses, which allowed the team to train the algorithm on large, unannotated datasets (a technique known as self-supervised learning).

"With clinically annotated pathology data in short supply, we must use it wisely when building classifiers," said corresponding author Dan Ruderman, PhD., director of analytics and machine learning at the Ellison Institute. "Our work leveraged abundant unannotated data to find a reduced set of tumor features that can represent unique biology. Building classifiers upon the biology that these features represent enables us to efficiently focus the precious annotated data on clinical aspects."

Once the model was trained to identify breast cancer tissue structure that distinguishes patients, the second step called upon its established grouping ability to learn which of those known patterns correlated to a particular diagnosis.  The discovery training set of 939 cases obtained from The Cancer Genome Atlas enabled the algorithm to accurately assign diagnostic categories of ER, PR, and Her2 status to whole slide H&E images with 0.89 AUC (ER), 0.81 AUC (PR), and 0.79 AUC (HER2) on a large independent test set of 2531 breast cancer cases from the Australian Breast Cancer Tissue Bank.

While using Oracle Cloud technology, the study's groundbreaking technique creates a new paradigm in medical machine learning, which may allow the future use of machine learning to process unannotated or unlabeled tissue specimens, as well as variably processed tissue samples, to assist pathologists in cancer diagnostics.

"Oracle for Research is thrilled to support and accelerate the Ellison Institute's trailblazing discoveries through advanced cloud technology," said Mamei Sun, Vice President, Oracle. "The Ellison Institute's innovative use of machine learning and AI can revolutionize cancer research, treatment, and patient care – and ultimately improve the lives of many."

Technique democratizes cancer diagnosis
In breast cancer, tumors that express a molecule called estrogen receptor look unique at the cellular level and fall into their own diagnostic category because they typically respond to anti-estrogen therapies.  Currently, pathologists must use chemical stains to probe biopsy samples for the presence of the estrogen receptor to make that diagnosis, and the process is time-consuming, expensive and variable. 

The established algorithm aims to improve pathologists' accuracy and efficiency in a digital pathology workflow by directly analyzing tumor images to diagnose them as "estrogen receptor positive" without staining specifically for estrogen receptor. The study's results support the notion that the use of tissue "fingerprints" may allow for a direct treatment response prediction, potentially obviating the need for molecular staining approaches currently utilized in cancer theragnosis.

An exciting application of this technology lies in the possibility of deploying computer-assisted diagnostics in medically underserved regions and developing nations that lack expert pathologists, specialists and the laboratory infrastructure to stain for molecular markers.

While the study suggests additional investigation is warranted to gain a deeper understanding of AI's ability to determine molecular status based on tissue architecture, it sets the stage for future applications where the technique could potentially aid in troubleshooting challenging tumor classification issues and enhance human pathologists' abilities to arrive at correct diagnoses and better inform treatment decisions.

About this study
In addition to Rawat and Ruderman, other study authors include Itzel Ortega, Preeyam Roy and David Agus of the Ellison Institute; along with Ellison Institute affiliate Fei Sha of USC Michelson Center for Convergent Bioscience; and USC collaborator Darryl Shibata of the Norris Comprehensive Cancer Center at Keck School of Medicine.

The study's computing resources were facilitated by Oracle Cloud Infrastructure through Oracle for Research, Oracle's global program providing free cloud credits and technical support to researchers, and was supported in part by the Breast Cancer Research Foundation grant BCRF-18-002.  

In addition to his appointment at the Ellison Institute, Ruderman is an assistant professor of research medicine at USC's Keck School of Medicine.

About Lawrence J. Ellison Institute for Transformative Medicine of USC
The Lawrence J. Ellison Institute for Transformative Medicine was founded in 2016 to leverage technology, spark innovation, and drive interdisciplinary, evidence-based research to reimagine and redefine cancer treatment, enhance health, and transform lives. Under the leadership of Dr. David B. Agus, MD, the Ellison Institute was designed to tackle the difficult questions in health care and research to push the boundaries of medicine forward.  The objective of the Ellison Institute is the rigorous and rapid translation of novel technologies into practice for use in clinical, diagnostic, and laboratory settings. The Institute is comprised of dedicated clinicians, experts and thought-leaders from disparate backgrounds who have come together to make a meaningful, positive impact on the lives of patients. This one-of-a-kind Institute hopes to serve as a powerful catalyst for innovation and reimagining the status quo in medical research and cancer treatments. For more information, visit Ellison.usc.edu.

About Oracle for Research
Oracle for Research is a global community that is working to address complex problems and drive meaningful change in the world. The program provides scientists, researchers, and university innovators with high-value, cost-effective Cloud technologies, participation in Oracle research user community, and access to Oracle's technical support network. Through the program's free cloud credits, users can leverage Oracle's proven technology and infrastructure while keeping research-developed IP private and secure. Learn more at https://www.oracle.com/oracle-for-research/.

About Oracle
The Oracle Cloud offers a complete suite of integrated applications for Sales, Service, Marketing, Human Resources, Finance, Supply Chain and Manufacturing, plus Highly Automated and Secure Generation 2 Infrastructure featuring the Oracle Autonomous Database. For more information about Oracle (NYSE: ORCL), please visit us at www.oracle.com.

Trademarks
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

"Cision" View original content to download multimedia:http://www.prnewswire.com/news-releases/lawrence-j-ellison-institute-for-transformative-medicine-of-usc-explores-breakthrough-tissue-fingerprints-concept-for-cancer-diagnostics-using-oracle-cloud-technology-301090954.html

SOURCE Oracle Corporation

FAQ

What is the significance of Oracle's partnership with the Ellison Institute?

Oracle's collaboration with the Ellison Institute aims to enhance cancer diagnostics through innovative AI-driven techniques, utilizing Oracle Cloud technology.

What algorithm accuracy was achieved in breast cancer diagnostics using Oracle's technology?

The study achieved diagnostic accuracy metrics of 0.89 AUC for ER, 0.81 AUC for PR, and 0.79 AUC for HER2 statuses.

How does the two-step technique work for cancer diagnostics?

The technique involves training an algorithm to identify unique tumor patterns before teaching it to correlate these patterns with specific diagnoses.

What is the potential impact of this study on underserved regions?

This study may enable the deployment of effective cancer diagnostics in medically underserved areas, where expert pathologists are scarce.

When was the research on the predictive algorithm published?

The research was published on July 9, 2020.

Oracle Corp

NYSE:ORCL

ORCL Rankings

ORCL Latest News

ORCL Stock Data

453.60B
1.64B
41.6%
44.83%
0.76%
Software - Infrastructure
Services-prepackaged Software
Link
United States of America
AUSTIN