bioAffinity Technologies Increases Efficiency of CyPath® Lung Test by Boosting Data Acquisition Throughput by 50% and Reducing Unit Cost
bioAffinity Technologies (NASDAQ: BIAF) has announced significant efficiency improvements to its CyPath® Lung cancer detection test. The company has achieved a 50% reduction in data acquisition time and a 60% decrease in sample processing costs. These optimizations are expected to deliver a 10% increase in overall throughput and a 25% decrease in unit cost.
The CyPath® Lung test, which uses flow cytometry and artificial intelligence to detect lung cancer in sputum samples, has demonstrated 92% sensitivity, 87% specificity, and 88% accuracy in detecting lung cancer in high-risk patients with small lung nodules. A recent economic impact study showed potential cost savings of $2,773 per Medicare patient and $6,460 per privately insured patient if CyPath® Lung is added to the standard of care, potentially saving $379 million and $895 million respectively nationwide.
bioAffinity Technologies (NASDAQ: BIAF) ha annunciato importanti miglioramenti nell'efficienza del suo test di rilevamento del cancro ai polmoni CyPath®. L'azienda ha ottenuto una riduzione del 50% nei tempi di acquisizione dei dati e una diminuzione del 60% nei costi di lavorazione dei campioni. Queste ottimizzazioni dovrebbero garantire un incremento del 10% nella produttività complessiva e una riduzione del 25% del costo unitario.
Il test CyPath® Lung, che utilizza la citometria a flusso e l'intelligenza artificiale per rilevare il cancro ai polmoni in campioni di espettorato, ha dimostrato una sensibilità del 92%, specificità dell'87% e accuratezza dell'88% nel rilevamento del cancro polmonare in pazienti ad alto rischio con piccoli noduli polmonari. Un recente studio sull'impatto economico ha evidenziato potenziali risparmi di 2.773$ per paziente Medicare e 6.460$ per paziente con assicurazione privata qualora il CyPath® Lung venga integrato nello standard di cura, con un risparmio potenziale di 379 milioni e 895 milioni di dollari rispettivamente a livello nazionale.
bioAffinity Technologies (NASDAQ: BIAF) ha anunciado mejoras significativas en la eficiencia de su prueba de detección de cáncer de pulmón CyPath®. La compañía ha logrado una reducción del 50% en el tiempo de adquisición de datos y una disminución del 60% en los costos de procesamiento de muestras. Se espera que estas optimizaciones resulten en un aumento del 10% en la productividad total y una reducción del 25% en el costo por unidad.
La prueba CyPath® Lung, que utiliza citometría de flujo e inteligencia artificial para detectar cáncer de pulmón en muestras de esputo, ha demostrado una sensibilidad del 92%, especificidad del 87% y precisión del 88% en la detección de cáncer de pulmón en pacientes de alto riesgo con pequeños nódulos pulmonares. Un estudio reciente sobre el impacto económico mostró posibles ahorros de 2,773 dólares por paciente Medicare y 6,460 dólares por paciente con seguro privado si CyPath® Lung se añade al estándar de atención, con un ahorro potencial de 379 millones y 895 millones de dólares respectivamente a nivel nacional.
bioAffinity Technologies (NASDAQ: BIAF)가 CyPath® 폐암 진단 검사에서 상당한 효율성 향상을 발표했습니다. 회사는 데이터 수집 시간 50% 단축과 샘플 처리 비용 60% 감소를 달성했습니다. 이러한 최적화는 전체 처리량 10% 증가와 단위 비용 25% 감소를 가져올 것으로 예상됩니다.
CyPath® Lung 검사는 유세포 분석과 인공지능을 활용해 객담 샘플에서 폐암을 감지하며, 고위험 환자의 작은 폐 결절에서 92% 민감도, 87% 특이도, 88% 정확도를 입증했습니다. 최근 경제적 영향 연구에서는 CyPath® Lung 검사를 표준 치료에 추가할 경우 메디케어 환자 1인당 2,773달러, 민간 보험 환자 1인당 6,460달러의 비용 절감 효과가 있으며, 전국적으로 각각 3억 7,900만 달러와 8억 9,500만 달러의 절감이 가능하다고 밝혔습니다.
bioAffinity Technologies (NASDAQ : BIAF) a annoncé des améliorations significatives de l'efficacité de son test de détection du cancer du poumon CyPath®. L'entreprise a réalisé une réduction de 50 % du temps d'acquisition des données et une baisse de 60 % des coûts de traitement des échantillons. Ces optimisations devraient permettre une augmentation de 10 % du débit global et une réduction de 25 % du coût unitaire.
Le test CyPath® Lung, qui utilise la cytométrie en flux et l'intelligence artificielle pour détecter le cancer du poumon dans des échantillons d'expectoration, a démontré une sensitivity de 92 %, une spécificité de 87 % et une précision de 88 % dans la détection du cancer du poumon chez des patients à haut risque présentant de petits nodules pulmonaires. Une récente étude d'impact économique a montré des économies potentielles de 2 773 $ par patient Medicare et de 6 460 $ par patient assuré privé si CyPath® Lung est intégré au standard de soins, ce qui pourrait représenter des économies nationales de 379 millions et 895 millions de dollars respectivement.
bioAffinity Technologies (NASDAQ: BIAF) hat bedeutende Effizienzsteigerungen bei seinem CyPath® Lungenkrebs-Erkennungstest bekannt gegeben. Das Unternehmen hat eine 50%ige Reduzierung der Datenerfassungszeit und eine 60%ige Senkung der Probenverarbeitungskosten erreicht. Diese Optimierungen sollen eine 10%ige Steigerung des Gesamtdurchsatzes und eine 25%ige Senkung der Stückkosten bewirken.
Der CyPath® Lung-Test, der Durchflusszytometrie und künstliche Intelligenz zur Erkennung von Lungenkrebs in Sputumproben verwendet, zeigte eine 92%ige Sensitivität, 87%ige Spezifität und 88%ige Genauigkeit bei der Erkennung von Lungenkrebs bei Hochrisikopatienten mit kleinen Lungenknötchen. Eine aktuelle wirtschaftliche Studie zeigte potenzielle Kosteneinsparungen von 2.773 USD pro Medicare-Patient und 6.460 USD pro privat versichertem Patienten, wenn CyPath® Lung in den Standard der Versorgung aufgenommen wird, was landesweit Einsparungen von 379 Millionen bzw. 895 Millionen USD bedeuten könnte.
- 50% reduction in data acquisition time improves operational efficiency
- 60% decrease in sample processing costs enhances profit margins
- 25% reduction in unit costs improves product competitiveness
- Significant potential cost savings for healthcare system ($379M-$895M annually)
- High accuracy rates (92% sensitivity, 87% specificity) validate test effectiveness
- Operational improvements required a year-long analysis indicating previous inefficiencies
Insights
bioAffinity's CyPath® Lung test efficiency improvements reduce costs by 25% and increase throughput by 10%, strengthening commercial viability without compromising performance.
bioAffinity Technologies has implemented significant operational improvements to its CyPath® Lung cancer detection test that substantially enhance its commercial profile. The 50% reduction in data acquisition time and 60% decrease in sample processing costs translate to a greater than 25% decrease in unit cost and 10% increase in overall throughput—all while maintaining the test's clinical performance metrics of
These efficiency enhancements directly impact the company's gross margin potential, creating a more favorable unit economics model critical for diagnostic test commercialization. The improvements were achieved without modifying the test itself or its validation protocols, indicating skilled operational optimization rather than risky technical changes.
The economic impact study referenced provides compelling evidence for payer adoption—a crucial hurdle for diagnostic tests. Potential cost savings of
For a microcap biotechnology company with a market capitalization of approximately
CyPath® Lung's efficiency improvements maintain excellent clinical performance while dramatically reducing costs and processing time, enhancing its clinical adoption potential.
The technical optimizations bioAffinity has implemented for CyPath® Lung represent significant progress in diagnostic test commercialization. By accelerating data acquisition and processing workflows while reducing reagent consumption, the company has addressed key operational barriers to clinical adoption without compromising the test's diagnostic accuracy.
The maintained performance metrics are particularly noteworthy:
The test's underlying technology combines flow cytometry—a well-established laboratory method—with artificial intelligence for data analysis, creating a scalable platform that benefits significantly from these efficiency improvements. The 50% decrease in data acquisition time directly impacts laboratory throughput capacity, while the 60% reduction in sample processing costs addresses the economic pressures faced by clinical laboratories.
From a clinical implementation perspective, the study by Drs. Morris and Habib highlights the substantial economic benefit possible through reduced diagnostic cascades—a critical consideration as healthcare systems increasingly emphasize value-based care models. The non-invasive nature of sputum collection combined with improved processing efficiency makes CyPath® Lung potentially more accessible and patient-friendly than current diagnostic approaches for lung nodule evaluation.
Process optimization enhances data acquisition and processing speed, lowers reagent costs, and maintains test performance for early lung cancer detection.
The recent enhancements streamline lab processing and data acquisition workflows, reduce reagent usage, and cut laboratory supply costs—all without changing the test itself, how patient sputum samples are collected and processed, or the method by which data is acquired and analyzed. The improvements are expected to result in a greater than
“The improvements we are announcing today are a result of a year-long operational analysis of how we could improve CyPath® Lung without compromising the test’s high performance and without modification to the test that has been validated by our clinical trial,” bioAffinity Technologies President and CEO Maria Zannes said.
CyPath® Lung uses flow cytometry and artificial intelligence to identify cell populations in patient sputum that indicate malignancy. Clinical study results demonstrated that CyPath® Lung had
“Optimization of CyPath® Lung is a key objective for our product development team. Alongside refining our branding, expanding our market and building sales, we evaluated operations to confirm to our shareholders that we are providing a cost-effective, accessible lung cancer diagnostic that meets a global need for earlier diagnosis to improve outcomes and increase patient survival while also reducing healthcare costs,” Zannes said.
Zannes highlighted a recent economic impact study, authored by pulmonologists Michael Morris, MD, and Sheila Habib, MD, that showed economic benefit for patients and the healthcare system if CyPath® Lung is added to the current standard of care. The study found that an average cost savings of
The study, “Economic Evaluation of a Novel Lung Cancer Diagnostic in a Population of Patients with a Positive Low-Dose Computed Tomography Result,” attributes the savings to a reduction in follow-up diagnostic assessments, expensive follow-up procedures and procedure-related complications. “The study by Dr. Morris and Dr. Habib reinforces the broader economic and clinical value of CyPath® Lung within the healthcare landscape,” Zannes said.
About CyPath® Lung
CyPath® Lung uses proprietary advanced flow cytometry and artificial intelligence (AI) to identify cell populations in patient sputum that indicate malignancy. Automated data analysis helps determine if cancer is present or if the patient is cancer-free. CyPath® Lung incorporates a fluorescent porphyrin that is preferentially taken up by cancer and cancer-related cells. Clinical study results demonstrated that CyPath® Lung had
About bioAffinity Technologies, Inc.
bioAffinity Technologies, Inc. addresses the need for noninvasive diagnosis of early-stage cancer and other diseases of the lung and broad-spectrum cancer treatments. The Company’s first product, CyPath® Lung, is a noninvasive test that has shown high sensitivity, specificity and accuracy for the detection of early-stage lung cancer. CyPath® Lung is marketed as a Laboratory Developed Test (LDT) by Precision Pathology Laboratory Services, a subsidiary of bioAffinity Technologies. For more information, visit www.bioaffinitytech.com.
Forward-Looking Statements
Certain statements in this press release constitute "forward-looking statements" within the meaning of the federal securities laws. Words such as "may," "might," "will," "should," "believe," "expect," "anticipate," "estimate," "continue," "predict," "forecast," "project," "plan," "intend" or similar expressions, or statements regarding intent, belief, or current expectations, are forward-looking statements. These forward-looking statements are based upon current estimates and assumptions and include statements regarding efficiency measures projected to decrease the time required to acquire sample data for analysis by nearly
View source version on businesswire.com: https://www.businesswire.com/news/home/20250417360177/en/
bioAffinity Technologies
Julie Anne Overton
Director of Communications
jao@bioaffinitytech.com
Investor Relations
Dave Gentry
RedChip Companies Inc.
1-800-RED-CHIP (733-2447) or 407-491-4498
BIAF@redchip.com
Source: bioAffinity Technologies, Inc.