STOCK TITAN

WiMi Hologram Cloud Develops A CNN Algorithm-Based Image Recognition System

Rhea-AI Impact
(Neutral)
Rhea-AI Sentiment
(Neutral)
Tags
Rhea-AI Summary

WiMi Hologram Cloud Inc. (NASDAQ: WIMI) announced the development of a CNN-based image recognition system, which enhances image recognition accuracy over traditional algorithms. The CNN algorithm autonomously constructs features, improving efficiency through a multi-layer network structure. This technology is crucial in various fields, including navigation and medical research. WiMi aims to expand the application of its CNN system to further leverage these advantages.

Positive
  • Introduction of a CNN algorithm-based image recognition system, enhancing recognition accuracy.
  • The ability of CNNs to autonomously construct features increases operational efficiency.
  • Potential applications in multiple fields, including navigation and medical research.
Negative
  • None.

BEIJING, Feb. 23, 2023 /PRNewswire/ -- WiMi Hologram Cloud Inc. (NASDAQ: WIMI) ("WiMi" or the "Company"), a leading global Hologram Augmented Reality ("AR") Technology provider, today announced that it has developed a CNN (convolutional neural network) algorithm-based image recognition system.

CNN is a highly efficient recognition algorithm based on an artificial neural network. WiMi applies the CNN algorithm to image recognition technology, showing apparent advantages compared to the traditional machine learning algorithm. CNN realizes the construction of features by the computer itself, thus breaking through the bottleneck of the original way of classification. This has brought image recognition to a new level. In addition, CNN has a unique structure, which can use two-dimensional images as the input layer so that some essential features of the images will not be lost, thus improving image recognition accuracy.

In CNNs, neurons in one layer are not connected to all neurons in the next layer. Instead, CNNs use a 3D structure in which each group of neurons analyses a specific region or 'feature' of the image. CNNs filter connections by proximity (analyzing pixels only for nearby pixels), allowing for a computationally sound training process. It consists of multiple stages of convolution and sampling, and then the extracted features are fed into the fully connected layer for the computation of classification results. The convolutional layer obtains the features of the image from the upper layer and the data on the unit nodes from each local area in the input layer, which need to cover the entire data set. CNNs can learn the invariant features of an image through the process of feature extraction and feature mapping.

CNN algorithm-based image recognition system perform well mainly because of their multi-layer network structure and pooling operations and their ability to produce the best possible results using less training time. CNNs generally consist of three or more neurons connected for training and inference. The convolutional layer is the core part of a convolutional neural network. The essence of convolution is to use the parameters of the convolution kernel to extract features from the data and obtain the result through matrix dot product operations and summation operations. In the fully connected layer, a linear stretching of the high-dimensional feature map allows the high-dimensional feature map to be transformed into a one-dimensional vector for classification or regression in the classifier. The activation function plays a crucial role in changing the mathematical relationship between the input and output data in the neural network. By adding the activation function, the output of the previous layer is first mapped by the activation function to obtain a non-linear process, which can improve the learning and expression capability of the network.

The main advantages of WiMi's system are as follows: firstly, it can extract features from multiple image datasets and select feature sets and elements from the datasets. Secondly, it can connect many small-scale units to learn a bunch of essential parameters by understanding the relationships between different scales and obtaining the optimal solution from them. Thirdly, it can be trained by learning other parts of the dataset so that more information can be extracted from the image dataset and additional feature information can be better utilized. In many practical tasks, CNNs use pooling layers for network connectivity to obtain the desired features and ultimately for target detection or target recognition; or share training results between different layers for tasks such as multi-classification, regression, image classification, etc.

Image recognition technology is an important area of artificial intelligence. It has great significance in research and applications in many fields, such as navigation, resource analysis, environmental monitoring, and medical research. In the future, WiMi will continue to expand the application scenarios of its developed CNN algorithm for image recognition systems.

About WIMI Hologram Cloud

WIMI Hologram Cloud, Inc. (NASDAQ:WIMI), whose commercial operations began in 2015, is a holographic cloud comprehensive technical solution provider that focuses on professional areas including holographic AR automotive HUD software, 3D holographic pulse LiDAR, head-mounted light field holographic equipment, holographic semiconductor, holographic cloud software, holographic car navigation and others. Its services and holographic AR technologies include holographic AR automotive application, 3D holographic pulse LiDAR technology, holographic vision semiconductor technology, holographic software development, holographic AR advertising technology, holographic AR entertainment technology, holographic ARSDK payment, interactive holographic communication and other holographic AR technologies.

Safe Harbor Statements

This press release contains "forward-looking statements" within the Private Securities Litigation Reform Act of 1995. These forward-looking statements can be identified by terminology such as "will," "expects," "anticipates," "future," "intends," "plans," "believes," "estimates," and similar statements. Statements that are not historical facts, including statements about the Company's beliefs and expectations, are forward-looking statements. Among other things, the business outlook and quotations from management in this press release and the Company's strategic and operational plans contain forward−looking statements. The Company may also make written or oral forward−looking statements in its periodic reports to the US Securities and Exchange Commission ("SEC") on Forms 20−F and 6−K, in its annual report to shareholders, in press releases, and other written materials, and in oral statements made by its officers, directors or employees to third parties. Forward-looking statements involve inherent risks and uncertainties. Several factors could cause actual results to differ materially from those contained in any forward−looking statement, including but not limited to the following: the Company's goals and strategies; the Company's future business development, financial condition, and results of operations; the expected growth of the AR holographic industry; and the Company's expectations regarding demand for and market acceptance of its products and services.

Further information regarding these and other risks is included in the Company's annual report on Form 20-F and the current report on Form 6-K and other documents filed with the SEC. All information provided in this press release is as of the date of this press release. The Company does not undertake any obligation to update any forward-looking statement, except as required under applicable laws.

Cision View original content:https://www.prnewswire.com/news-releases/wimi-hologram-cloud-develops-a-cnn-algorithm-based-image-recognition-system-301754189.html

SOURCE WiMi Hologram Cloud Inc.

FAQ

What is the significance of the CNN algorithm developed by WIMI?

The CNN algorithm enhances image recognition accuracy and operational efficiency, making it significant for various applications.

How does the CNN system improve image recognition technology for WIMI?

The CNN system autonomously constructs features, improving accuracy and reducing training time compared to traditional algorithms.

What fields could benefit from WIMI's new image recognition technology?

Fields such as navigation, resource analysis, environmental monitoring, and medical research could benefit from the technology.

When was the CNN algorithm-based image recognition system announced by WIMI?

The system was announced on February 23, 2023.

What is the stock symbol for WiMi Hologram Cloud?

The stock symbol for WiMi Hologram Cloud is WIMI.

WiMi Hologram Cloud Inc. American Depositary Share

NASDAQ:WIMI

WIMI Rankings

WIMI Latest News

WIMI Stock Data

80.53M
88.15M
1.08%
0.8%
Advertising Agencies
Communication Services
Link
United States of America
Beijing