STOCK TITAN

WiMi Develops A Data Interaction System Based on Data Mining And Neural Network Topology Visualization

Rhea-AI Impact
(Neutral)
Rhea-AI Sentiment
(Neutral)
Tags
Rhea-AI Summary
WiMi Hologram Cloud has announced the development of a data interaction system that integrates data mining and neural network topology visualization. The system aims to solve the problem of 'information silos' and ensure safe and reliable information transmission. WiMi uses neural networks for data classification and analysis in data mining, which provides advantages such as noise tolerance and high accuracy for complex mappings. The company will continue to study this area to improve socio-economic benefits.
Positive
  • WiMi Hologram Cloud has developed a data interaction system that integrates data mining and neural network topology visualization, which could improve data analysis and classification accuracy in data mining.
  • The system aims to solve the problem of 'information silos' and ensure safe and reliable information transmission through encryption and redundant checksum technology.
  • WiMi's use of neural networks in data mining provides advantages such as noise tolerance, high accuracy for complex mappings, and ease of automation with new data.
Negative
  • None.

BEIJING, May 5, 2023 /PRNewswire/ -- WiMi Hologram Cloud Inc. (NASDAQ: WIMI) ("WiMi" or the "Company"), a leading global Hologram Augmented Reality ("AR") Technology provider, today announced the development of a data interaction system that integrates data mining and neural network topology visualization. The system meets the requirements of real-time data interaction, realizes flexible configuration of data interaction, and can effectively solve the problem of "information silos." In addition, it achieves safe and reliable information transmission by using encryption and redundant checksum technology to ensure the integrity, accuracy, reliability, and security of the data interaction process.

Data mining is a trending topic in artificial intelligence and database research. It is the integration of database and artificial intelligence technology. The so-called data mining refers to the process of mining valuable and helpful information from a large amount of data in a database and searching for hidden information from a large amount of data through algorithms. Data mining has developed a set of mining models covering association, classification, clustering, etc. The whole process of data mining is as follows:

(1) Data cleaning: The raw data used for knowledge discovery in practical applications usually must be completed. Except for special applications such as outlier analysis, noise should be eliminated, inconsistent data should be removed, anomalous and erroneous values should be corrected, and uncertain or incomplete values should be completed.
(2) Data integration: Combining data from multiple sources and different forms into one data.
(3) Data Selection: Extracts and analyzes task-relevant data from the database.
(4) Data Transformation: Converting and unifying data into a form suitable for mining through aggregation operations.
(5) Data mining: As the most important step in the whole process, the core operation uses automatic and intelligent methods to extract data patterns.
(6) Pattern evaluation: Filtering patterns of knowledge based on specific metrics of interest.
(7) Knowledge representation: Using visualization and knowledge representation techniques to display the mined knowledge to the user.

WiMi uses neural networks for data classification and analysis in data mining. Data analysis using neural networks has the following advantages: first, it is noise tolerant; second, it provides high accuracy for complex nonlinear mappings; third, it can be implemented on parallel hardware and is highly maintainable; and fourth, it can be easily updated with new data and can be easily automated.

Currently, neural networks have been widely used in image recognition, segmentation, speech recognition, and other fields. With an analogy to human brain information transfer, the training method can fundamentally change the network structure and get better training performance. Neural network topology visualization presents the connection relationship of network nodes as graphical images composed of points and lines, etc. This can clearly and intuitively reflect the network operation, assist people in evaluating, predicting, and analyzing various aspects of the network nodes and links, and effectively recognize and understand the information, patterns, and changes within the network.

Users can observe and analyze the drawing results by extracting network topology features and performing geometric mapping to complete visual reception. For time-varying data, it can show the time-varying evolution process of network structure through animation simulation and other expressions, thus helping users to think and summarize and build a basic understanding of network data timeliness. Through continuous iterative, interactive feedback, the system optimizes the plotting results and, with the help of other hardware auxiliary devices, improves the user's cognition of the potential information characteristics and laws of large-scale complex network data.

Another core element of WiMi's data interaction system is user interaction. Interaction is a dialogue between users and the system, the process of interactive manipulation and understanding of data. Interaction effectively alleviates the contradiction between limited visualization space and data overload and helps expand the reach for information representation in visualization, thus addressing the gap between limited space and data volume and complexity. At the same time, interaction enables users to understand and analyze the data better, helping them explore the data and improve data awareness.

Network topology visualization technology has flourished with the development of the Internet. With the development of emerging technologies such as graphical computing and virtual reality, significant progress has been made in the research of network topology visualization technology, which also has a wide range of application prospects in network topology analysis, security situational awareness, management, and Internet modeling.

Network topology visualization technology has flourished with the development of the Internet. With emerging technologies such as graphical computing and virtual reality, the research on network topology visualization technology has also made significant progress. The technology also has broad application prospects in network topology analysis, security situational awareness, management, and Internet modeling.

Data mining is a multidisciplinary blend of technologies. The use and combination of related algorithms and techniques vary according to application scenarios and needs. Applying the interpretability of neural networks in data mining will be a valuable research direction. Theoretical research will ultimately serve specific needs and applications. Combining both in applications still needs to be explored in the future. WiMi will further study this area and strive for breakthroughs that will profoundly impact the improvement of socio-economic benefits.

About WIMI Hologram Cloud

WIMI Hologram Cloud, Inc. (NASDAQ:WIMI) is a holographic cloud comprehensive technical solution provider that focuses on professional areas including holographic AR automotive HUD software, 3D holographic pulse LiDAR, head-mounted light field holographic equipment, holographic semiconductor, holographic cloud software, holographic car navigation and others. Its services and holographic AR technologies include holographic AR automotive application, 3D holographic pulse LiDAR technology, holographic vision semiconductor technology, holographic software development, holographic AR advertising technology, holographic AR entertainment technology, holographic ARSDK payment, interactive holographic communication and other holographic AR technologies.

Safe Harbor Statements

This press release contains "forward-looking statements" within the Private Securities Litigation Reform Act of 1995. These forward-looking statements can be identified by terminology such as "will," "expects," "anticipates," "future," "intends," "plans," "believes," "estimates," and similar statements. Statements that are not historical facts, including statements about the Company's beliefs and expectations, are forward-looking statements. Among other things, the business outlook and quotations from management in this press release and the Company's strategic and operational plans contain forward−looking statements. The Company may also make written or oral forward−looking statements in its periodic reports to the US Securities and Exchange Commission ("SEC") on Forms 20−F and 6−K, in its annual report to shareholders, in press releases, and other written materials, and in oral statements made by its officers, directors or employees to third parties. Forward-looking statements involve inherent risks and uncertainties. Several factors could cause actual results to differ materially from those contained in any forward−looking statement, including but not limited to the following: the Company's goals and strategies; the Company's future business development, financial condition, and results of operations; the expected growth of the AR holographic industry; and the Company's expectations regarding demand for and market acceptance of its products and services.

Further information regarding these and other risks is included in the Company's annual report on Form 20-F and the current report on Form 6-K and other documents filed with the SEC. All information provided in this press release is as of the date of this press release. The Company does not undertake any obligation to update any forward-looking statement except as required under applicable laws.

Cision View original content:https://www.prnewswire.com/news-releases/wimi-develops-a-data-interaction-system-based-on-data-mining-and-neural-network-topology-visualization-301816936.html

SOURCE WiMi Hologram Cloud Inc.

FAQ

What is WiMi Hologram Cloud's latest announcement?

WiMi Hologram Cloud has announced the development of a data interaction system that integrates data mining and neural network topology visualization.

What are the advantages of using neural networks in data mining?

Using neural networks in data mining provides advantages such as noise tolerance, high accuracy for complex mappings, and ease of automation with new data.

What problem does the system aim to solve?

The system aims to solve the problem of 'information silos' and ensure safe and reliable information transmission.

What will WiMi Hologram Cloud focus on in the future?

WiMi Hologram Cloud will further study the use of neural networks in data mining to improve socio-economic benefits.

WiMi Hologram Cloud Inc. American Depositary Share

NASDAQ:WIMI

WIMI Rankings

WIMI Latest News

WIMI Stock Data

80.53M
88.15M
1.08%
0.8%
Advertising Agencies
Communication Services
Link
United States of America
Beijing