STOCK TITAN

JPMorganChase, Quantinuum, Argonne National Laboratory, Oak Ridge National Laboratory, and University of Texas at Austin Advance the Application of Quantum Computing to Potential Real-World Use Cases Beyond the Capabilities of Classical Computing

Rhea-AI Impact
(Neutral)
Rhea-AI Sentiment
(Neutral)
Tags

A groundbreaking collaboration between JPMorganChase, Quantinuum, and leading research institutions has achieved a significant quantum computing milestone by successfully demonstrating Certified Quantum Randomness. The team utilized a 56-qubit Quantinuum System Model H2 trapped-ion quantum computer to generate certifiably random bits, a task impossible for classical computers.

The research, published in Nature on March 26, employed a two-step protocol: First, generating challenge random circuits sent to the quantum computer, which responded faster than classical simulation capabilities. Second, mathematically certifying the randomness using classical supercomputers with 1.1 ExaFLOPS performance, resulting in 71,313 certified bits of entropy.

This breakthrough has significant implications for cryptography, fairness, privacy, and complex mathematical problem-solving, marking the first practical application of quantum computing beyond classical computing capabilities.

Una collaborazione innovativa tra JPMorganChase, Quantinuum e importanti istituzioni di ricerca ha raggiunto un traguardo significativo nel campo del calcolo quantistico dimostrando con successo Randomness Quantistica Certificata. Il team ha utilizzato un computer quantistico a 56 qubit, il Quantinuum System Model H2, per generare bit certificabilmente casuali, un compito impossibile per i computer classici.

La ricerca, pubblicata su Nature il 26 marzo, ha impiegato un protocollo in due fasi: prima, generando circuiti casuali di sfida inviati al computer quantistico, che ha risposto più rapidamente rispetto alle capacità di simulazione classica. In secondo luogo, certificando matematicamente la casualità utilizzando supercomputer classici con performance di 1,1 ExaFLOPS, risultando in 71.313 bit certificati di entropia.

Questa scoperta ha implicazioni significative per la crittografia, l'equità, la privacy e la risoluzione di problemi matematici complessi, segnando la prima applicazione pratica del calcolo quantistico oltre le capacità dei computer classici.

Una colaboración innovadora entre JPMorganChase, Quantinuum y las principales instituciones de investigación ha logrado un hito significativo en la computación cuántica al demostrar con éxito Aleatoriedad Cuántica Certificada. El equipo utilizó una computadora cuántica de 56 qubits, el Quantinuum System Model H2, para generar bits certificablemente aleatorios, una tarea imposible para las computadoras clásicas.

La investigación, publicada en Nature el 26 de marzo, empleó un protocolo de dos pasos: primero, generando circuitos aleatorios de desafío enviados a la computadora cuántica, que respondió más rápido que las capacidades de simulación clásica. En segundo lugar, certificando matemáticamente la aleatoriedad utilizando supercomputadoras clásicas con un rendimiento de 1,1 ExaFLOPS, resultando en 71,313 bits certificados de entropía.

Este avance tiene implicaciones significativas para la criptografía, la equidad, la privacidad y la resolución de problemas matemáticos complejos, marcando la primera aplicación práctica de la computación cuántica más allá de las capacidades de la computación clásica.

JPMorganChase, Quantinuum 및 주요 연구 기관 간의 혁신적인 협력은 인증된 양자 무작위성을 성공적으로 입증하여 중요한 양자 컴퓨팅 이정표를 달성했습니다. 팀은 56 큐비트 양자 컴퓨터인 Quantinuum System Model H2를 사용하여 클래식 컴퓨터로는 불가능한 인증된 무작위 비트를 생성했습니다.

3월 26일 Nature에 발표된 이 연구는 두 단계 프로토콜을 사용했습니다: 첫째, 양자 컴퓨터에 전송된 도전 무작위 회로를 생성하였고, 이는 클래식 시뮬레이션 능력보다 더 빠르게 응답했습니다. 둘째, 1.1 ExaFLOPS 성능을 가진 클래식 슈퍼컴퓨터를 사용하여 수학적으로 무작위성을 인증하여 71,313개의 인증된 엔트로피 비트를 생성했습니다.

이 획기적인 발견은 암호화, 공정성, 개인 정보 보호 및 복잡한 수학 문제 해결에 중요한 함의를 가지며, 클래식 컴퓨팅 능력을 넘어서는 양자 컴퓨팅의 첫 번째 실용적 응용을 의미합니다.

Une collaboration révolutionnaire entre JPMorganChase, Quantinuum et des institutions de recherche de premier plan a atteint une étape significative dans le domaine de l'informatique quantique en démontrant avec succès Randomness Quantique Certifiée. L'équipe a utilisé un ordinateur quantique à 56 qubits, le Quantinuum System Model H2, pour générer des bits certifiables aléatoires, une tâche impossible pour les ordinateurs classiques.

La recherche, publiée dans Nature le 26 mars, a employé un protocole en deux étapes : d'abord, en générant des circuits aléatoires de défi envoyés à l'ordinateur quantique, qui a répondu plus rapidement que les capacités de simulation classiques. Ensuite, en certifiant mathématiquement l'aléatoire en utilisant des superordinateurs classiques avec des performances de 1,1 ExaFLOPS, ce qui a abouti à 71 313 bits certifiés d'entropie.

Cette avancée a des implications significatives pour la cryptographie, l'équité, la confidentialité et la résolution de problèmes mathématiques complexes, marquant la première application pratique de l'informatique quantique au-delà des capacités de l'informatique classique.

Eine wegweisende Zusammenarbeit zwischen JPMorganChase, Quantinuum und führenden Forschungseinrichtungen hat einen bedeutenden Meilenstein in der Quantencomputing erreicht, indem erfolgreich Zertifizierte Quanten-Zufälligkeit demonstriert wurde. Das Team nutzte einen 56-Qubit Quantinuum System Model H2 gefangenen-Ionen-Quantencomputer, um zertifizierbar zufällige Bits zu erzeugen, eine Aufgabe, die für klassische Computer unmöglich ist.

Die Forschung, die am 26. März in Nature veröffentlicht wurde, verwendete ein zweistufiges Protokoll: Zunächst wurden herausfordernde Zufallsschaltungen an den Quantencomputer gesendet, der schneller antwortete als die klassischen Simulationsfähigkeiten. Zweitens wurde die Zufälligkeit mathematisch zertifiziert, indem klassische Supercomputer mit 1,1 ExaFLOPS Leistung eingesetzt wurden, was zu 71.313 zertifizierten Entropie-Bits führte.

Dieser Durchbruch hat erhebliche Auswirkungen auf die Kryptographie, Fairness, Privatsphäre und die Lösung komplexer mathematischer Probleme und markiert die erste praktische Anwendung von Quantencomputing über die Möglichkeiten klassischer Computer hinaus.

Positive
  • First successful demonstration of quantum computing surpassing classical computing capabilities
  • Achievement of certified randomness generation with practical applications in cryptography and security
  • Successful remote operation of quantum computer over internet, showing practical deployment potential
Negative
  • None.

The joint research team achieves a quantum computing milestone, realizing Certified Quantum Randomness and making previously theoretic experiments into meaningful, real-world uses for a quantum computer.

NEW YORK--(BUSINESS WIRE)-- In a paper in Nature published on March 26, a team of researchers from JPMorganChase, Quantinuum, Argonne National Laboratory, Oak Ridge National Laboratory, and the University of Texas at Austin achieved a critical industry milestone by demonstrating a potential application of a quantum computer.

Randomness has many industrial uses, from solving complex mathematical problems to essential applications in areas such as cryptography, fairness and privacy. The group conducted the first successful demonstration of a novel quantum computing protocol to generate Certified Randomness. The researchers leveraged a task originally designed to demonstrate quantum advantage, called Random Circuit Sampling (RCS), to perform a certified-randomness-expansion protocol, which outputs more randomness than it takes as input. This task is unachievable by classical computation.

The 56-qubit Quantinuum System Model H2 trapped-ion quantum computer, with its high-fidelity and all-to-all qubit connectivity, was used for this study, demonstrating that a quantum computer can now achieve computational power beyond that offered by the most powerful classical supercomputers. Accessing H2 remotely over the internet, the team generated certifiably random bits.

The protocol consisted of two steps. First, the team generated challenge random circuits and sent them to the untrusted remote quantum computer, which was then asked to return the corresponding samples. The response time was so quick that the challenge circuits could not be simulated classically in the same amount of time. This was tested against the best currently known techniques for simulating random circuits on the world’s most powerful supercomputers. Second, the randomness was mathematically certified to be genuine using classical supercomputers. This demonstrated randomness could not be mimicked by classical methods. Using classical certification across multiple leadership-scale supercomputers with a combined sustained performance of 1.1 x 1018 floating point operations per second (1.1 ExaFLOPS), the team certified 71,313 bits of entropy.

“This work marks a major milestone in quantum computing, demonstrating a solution to a real-world challenge using a quantum computer beyond the capabilities of classical supercomputers today,” said Dr. Marco Pistoia, Head of Global Technology Applied Research and Distinguished Engineer, JPMorganChase. “This development of Certified Randomness not only shows advancements in quantum hardware, but will be vital to further research, statistical sampling, numerical simulations and cryptography.”

“Today, we celebrate a pivotal milestone that brings quantum computing firmly into the realm of practical, real-world applications,” said Dr. Rajeeb Hazra, President and CEO of Quantinuum. “Our application of Certified Quantum Randomness not only demonstrates the unmatched performance of our trapped-ion technology but sets a new standard for delivering robust quantum security and enabling advanced simulations across industries like finance, manufacturing, and beyond. At Quantinuum, we are driving pioneering breakthroughs to redefine industries and unlock the full potential of quantum computing.”

“When I first proposed my certified randomness protocol in 2018, I had no idea how long I’d need to wait to see an experimental demonstration of it,” said Prof. Scott Aaronson, Schlumberger Centennial Chair of Computer Science and Director of the Quantum Information Center at The University of Texas at Austin. “I’m thrilled that JPMorganChase and Quantinuum have now built upon the original protocol and realized it. This is a first step toward using quantum computers to generate certified random bits for actual cryptographic applications.”

“These results in quantum computing were enabled by the world-leading U.S. Department of Energy computing facilities at Oak Ridge National Laboratory, Argonne National Laboratory and Lawrence Berkeley National Laboratory,” said Dr. Travis Humble, Director of the Quantum Computing User Program and Director of the Quantum Science Center, both at Oak Ridge National Laboratory. “Such pioneering efforts push the frontiers of computing and provide valuable insights into the intersection of quantum computing and high-performance computing.”

Read the full research paper here and a blog post from JPMorganChase here.

About JPMorganChase

JPMorgan Chase & Co. (NYSE: JPM) is a leading financial services firm based in the United States of America (“U.S.”), with operations worldwide. JPMorgan Chase had $4.0 trillion in assets and $345 billion in stockholders’ equity as of December 31, 2024. With over 63,000 technologists globally and an annual tech spend of $17 billion, JPMorgan Chase is dedicated to improving the design, analytics, development, coding, testing and application programming that goes into creating high quality software and new products. Under the J.P. Morgan and Chase brands, the Firm serves millions of customers in the U.S., and many of the world’s most prominent corporate, institutional and government clients globally. Visit http://www.jpmorganchase.com/tech for more information.

About Argonne National Laboratory

Argonne National Laboratory seeks solutions to pressing national problems in science and technology by conducting leading-edge basic and applied research in virtually every scientific discipline. Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.

About Quantinuum

Quantinuum is the world leader in quantum computing. The company’s quantum systems deliver the highest performance across all industry benchmarks. Quantinuum’s over 550 employees, including 370+ scientists and engineers, across the US, UK, Germany, and Japan, are driving the quantum computing revolution.

About Oak Ridge National Laboratory (ORNL)

UT-Battelle manages ORNL for the U.S. Department of Energy’s (DOE) Office of Science, the single largest supporter of basic research in the physical sciences in the United States. DOE’s Office of Science is working to address some of the most pressing challenges of our time. For more information, visit https://energy.gov/science.

About University of Texas at Austin

The University of Texas at Austin, founded in 1883, ranks among the 40 best universities in the world. It supports more than 50,000 diverse students with top national programs across 18 colleges and schools. UT is consistently rated a top educational value, and Austin is ranked America’s one of the top cities in which to live.

Media Contacts



Jennifer Lavoie

Jennifer.h.lavoie@jpmchase.com



Emily Mullins

Emily.g.mullins@jpmchase.com

Source: JPMorgan Chase & Co.

FAQ

What breakthrough did JPM and Quantinuum achieve in quantum computing?

They demonstrated Certified Quantum Randomness using a 56-qubit quantum computer, generating truly random bits that cannot be replicated by classical computers.

How many bits of entropy did JPM's quantum computing experiment certify?

The team certified 71,313 bits of entropy using classical supercomputers with 1.1 ExaFLOPS performance.

What practical applications does JPM's quantum randomness breakthrough have?

The breakthrough has applications in cryptography, fairness, privacy, and solving complex mathematical problems.

What quantum computer system did JPM use for the randomness certification?

The team used Quantinuum's System Model H2, a 56-qubit trapped-ion quantum computer with high-fidelity and all-to-all qubit connectivity.

How does JPM's quantum randomness protocol work?

The protocol generates challenge random circuits, sends them to the quantum computer for rapid processing, and then certifies the randomness mathematically using classical supercomputers.
Jpmorgan Chase

NYSE:JPM

JPM Rankings

JPM Latest News

JPM Stock Data

709.32B
2.78B
0.48%
74.59%
1.05%
Banks - Diversified
National Commercial Banks
Link
United States
NEW YORK