STOCK TITAN

Bruker Announces First-of-a-kind 1.3 GHz High-Resolution NMR System

Rhea-AI Impact
(Low)
Rhea-AI Sentiment
(Very Positive)
Tags

Bruker has announced the successful development and testing of the world's first high-resolution 1.3 GHz NMR spectrometer with a stable, standard-bore 54 mm superconducting magnet. The groundbreaking system features a 30.5 Tesla field strength and incorporates a novel ReBCO high-temperature superconductor insert.

The new spectrometer maintains similar physical dimensions and cryogen consumption as Bruker's 1.2 GHz magnets. Testing was conducted using five different NMR probe configurations, demonstrating increased resolution and sensitivity for both liquids and solids NMR spectra.

The technology particularly benefits spectroscopy of bio-macromolecules lacking dispersion, such as carbohydrates, glycoproteins, RNA, and intrinsically disordered proteins. In solid-state applications, the increased field strength improves the study of quadrupolar nuclei by producing narrower spectral lines.

Bruker ha annunciato lo sviluppo e il collaudo di successo del primo spettrometro NMR ad alta risoluzione da 1,3 GHz al mondo, dotato di un magnete superconduttore standard da 54 mm. Questo sistema innovativo presenta una forza di campo di 30,5 Tesla e incorpora un nuovo inserto di superconduttore ad alta temperatura ReBCO.

Il nuovo spettrometro mantiene dimensioni fisiche e consumo di criogeni simili a quelli dei magneti da 1,2 GHz di Bruker. I test sono stati condotti utilizzando cinque diverse configurazioni di sonda NMR, dimostrando un aumento della risoluzione e della sensibilità sia per gli spettri NMR di liquidi che di solidi.

Questa tecnologia beneficia particolarmente la spettroscopia di bio-macromolecole prive di dispersione, come carboidrati, glicoproteine, RNA e proteine intrinsecamente disordinate. Nelle applicazioni in stato solido, l'aumento della forza di campo migliora lo studio dei nuclei quadrupolari producendo linee spettrali più strette.

Bruker ha anunciado el desarrollo y la prueba exitosa del primer espectrómetro NMR de alta resolución de 1.3 GHz del mundo, con un imán superconductor de 54 mm de diámetro estándar. Este sistema innovador cuenta con una fuerza de campo de 30.5 Tesla e incorpora un nuevo inserto de superconductor de alta temperatura ReBCO.

El nuevo espectrómetro mantiene dimensiones físicas y consumo de criógeno similares a los imanes de 1.2 GHz de Bruker. Las pruebas se realizaron utilizando cinco configuraciones diferentes de sonda NMR, demostrando un aumento en la resolución y sensibilidad tanto para los espectros NMR de líquidos como de sólidos.

La tecnología beneficia particularmente la espectroscopía de bio-macromoléculas que carecen de dispersión, como carbohidratos, glicoproteínas, ARN y proteínas intrínsecamente desordenadas. En aplicaciones de estado sólido, el aumento de la fuerza de campo mejora el estudio de núcleos cuadrupolares produciendo líneas espectrales más estrechas.

Bruker는 안정적인 표준 직경 54mm 초전도 자석을 갖춘 세계 최초의 1.3 GHz NMR 분광계의 성공적인 개발 및 테스트를 발표했습니다. 이 혁신적인 시스템은 30.5 테슬라의 자기장을 특징으로 하며, 새로운 ReBCO 고온 초전도체 삽입물이 포함되어 있습니다.

새로운 분광계는 Bruker의 1.2 GHz 자석과 유사한 물리적 크기와 냉매 소비를 유지합니다. 테스트는 다섯 가지 서로 다른 NMR 프로브 구성으로 수행되었으며, 액체와 고체 NMR 스펙트럼 모두에 대해 해상도와 감도가 향상되었습니다.

이 기술은 분산이 없는 생체 거대분자의 분광학에 특히 유리하며, 여기에는 탄수화물, 당단백질, RNA 및 본질적으로 무질서한 단백질이 포함됩니다. 고체 상태 응용 프로그램에서는 자기장 강도의 증가가 사중극 핵 연구를 개선하여 더 좁은 스펙트럼 선을 생성합니다.

Bruker a annoncé le développement et les tests réussis du premier spectromètre RMN haute résolution de 1,3 GHz au monde, doté d'un aimant supraconducteur standard de 54 mm. Ce système révolutionnaire présente une force de champ de 30,5 Tesla et intègre un nouvel insert de supraconducteur à haute température ReBCO.

Le nouveau spectromètre maintient des dimensions physiques et une consommation de cryogène similaires à celles des aimants de 1,2 GHz de Bruker. Les tests ont été réalisés en utilisant cinq configurations différentes de sonde RMN, démontrant une résolution et une sensibilité accrues tant pour les liquides que pour les solides.

Cette technologie bénéficie particulièrement à la spectroscopie des bio-macromolécules dépourvues de dispersion, telles que les glucides, les glycoprotéines, l'ARN et les protéines intrinsèquement désordonnées. Dans les applications en phase solide, l'augmentation de la force du champ améliore l'étude des noyaux quadrupolaires en produisant des lignes spectrales plus étroites.

Bruker hat die erfolgreiche Entwicklung und Testung des weltweit ersten 1,3 GHz NMR-Spektrometers mit einem stabilen, standardmäßigen 54 mm supraleitenden Magneten angekündigt. Das bahnbrechende System bietet eine 30,5 Tesla Feldstärke und enthält einen neuartigen ReBCO-Hochtemperatur-Supraleiter-Einsatz.

Das neue Spektrometer hat ähnliche physikalische Abmessungen und Kryogenverbrauch wie die 1,2 GHz-Magnete von Bruker. Die Tests wurden mit fünf verschiedenen NMR-Sondenkonfigurationen durchgeführt und zeigten eine erhöhte Auflösung und Empfindlichkeit sowohl für Flüssigkeiten als auch für Feststoffe im NMR-Spektrum.

Die Technologie kommt insbesondere der Spektroskopie von bio-makromolekularen Verbindungen zugute, die keine Dispersion aufweisen, wie z. B. Kohlenhydrate, Glykoproteine, RNA und intrinsisch ungeordnete Proteine. In Festkörperanwendungen verbessert die erhöhte Feldstärke das Studium von quadrupolaren Kernen, indem sie schmalere Spektrallinien erzeugt.

Positive
  • First-of-its-kind 1.3 GHz NMR technology demonstrates technological leadership
  • Maintains similar operational costs as previous models despite higher performance
  • Successfully tested across multiple configurations proving commercial viability
  • Enables new research capabilities in biomolecular and materials science
Negative
  • Slightly increased stray field radius compared to previous models

Insights

Bruker's introduction of the first-of-its-kind 1.3 GHz NMR spectrometer represents a significant technological milestone in the scientific instrumentation field. By achieving a 30.5 Tesla field strength using a novel ReBCO high-temperature superconductor insert, Bruker has pushed NMR capabilities beyond the previous 1.2 GHz ceiling.

The technical achievement is particularly impressive as they've maintained the same physical dimensions and cryogen consumption as their 1.2 GHz systems while delivering higher field strength. The successful testing across five different probe configurations demonstrates the platform's versatility and readiness for scientific applications.

From a research perspective, this advancement offers substantial benefits for studying complex biomolecules that traditionally lack spectral dispersion, including glycoproteins, RNA, and intrinsically disordered proteins. For materials science, the higher field strength provides narrower spectral lines for quadrupolar nuclei and enhanced chemical shift measurements - critical factors for advanced materials characterization.

This development reinforces Bruker's technological leadership in ultra-high field NMR, where they've consistently pioneered higher field systems from 1.0 GHz through to this 1.3 GHz breakthrough. The endorsements from researchers at prestigious institutions like RIKEN and CEMHTI-CNRS validate the scientific value of this innovation for both biological and materials research applications.

Bruker's 1.3 GHz NMR announcement strengthens its position as the dominant player in the high-end NMR market, a specialized but high-margin segment within scientific instrumentation. This innovation builds directly on their GHz-class NMR portfolio (1.0-1.2 GHz systems), demonstrating continued R&D momentum in their core technology.

While the article doesn't specify commercialization timeline or pricing, ultra-high field NMR systems typically command $10-15 million per installation, representing significant potential revenue opportunities. The business model includes not just the initial system sale but ongoing revenue from specialized probes and accessories, as evidenced by the five probe configurations already tested.

The strategic value extends beyond direct revenue - Bruker's persistent leadership in pushing NMR technology boundaries creates substantial barriers to entry for competitors. Their proven expertise in hybrid LTS-HTS magnet architecture represents intellectual property that's extremely difficult to replicate.

For context, high-field NMR systems are primarily purchased by well-funded research institutions, pharmaceutical companies, and national laboratories - customers with stable funding profiles who prioritize technological capabilities over price. The endorsements from scientists at RIKEN (Japan) and CEMHTI-CNRS (France) signal potential international demand for this technology.

This advancement should be viewed as reinforcing Bruker's competitive moat in a specialized high-value market, though the revenue impact will likely materialize gradually as these sophisticated instruments have extended sales cycles and installation timeframes.

Novel hybrid LTS-HTS superconducting magnet enables high-resolution for liquids and solids ultra-high field NMR research in biomolecular and advanced materials sciences

ASILOMAR, Calif.--(BUSINESS WIRE)-- At the Joint ENC-ISMAR Conference 2025, Bruker Corporation, the leading provider of Nuclear Magnetic Resonance (NMR) spectroscopy solutions, announced the successful development and testing of the world’s first high-resolution 1.3 GHz NMR spectrometer with a stable, standard-bore 54 mm superconducting magnet. This first-of-a-kind ultra-high field magnet and spectrometer pushes the boundaries of what is possible in the field of NMR research and opens a new chapter of ultra-high field NMR with even higher dispersion and resolution.

The 1.3 GHz first-of-a-kind high-resolution UHF NMR spectrometer in Bruker’s UHF facility in Fällanden, Switzerland

The 1.3 GHz first-of-a-kind high-resolution UHF NMR spectrometer in Bruker’s UHF facility in Fällanden, Switzerland

Building on the success of its 1.0-1.2 GHz systems, Bruker's 1.3 GHz NMR spectrometer offers unprecedented resolution and sensitivity, enabling scientists to study complex biomolecular systems and advanced materials in greater detail. The first-of-a-kind superconducting and persistent standard-bore NMR magnet has a field strength of 30.5 Tesla (T) and incorporates a novel ReBCO high-temperature superconductor (HTS) insert, generating even higher magnetic fields. The novel 1.3 GHz magnet extends Bruker’s innovative LTS-HTS hybrid magnet architecture. Despite higher field, the 1.3 GHz magnet maintains the same physical dimensions and cryogen consumption as Bruker’s 1.2 GHz magnets, with a slightly increased stray field radius.

Applications testing at 1.3 GHz proton frequency was conducted using five different NMR probe configurations: a 3 mm TXI liquids room-temperature probe, a 5 mm TXO liquids CryoProbe, a 111 kHz (0.7 mm) HCN solid-state magic-angle spinning (MAS) probe, a 42 kHz (1.9 mm) solid-state MAS probe optimized for materials research, and the new ultra-fast spinning 160 kHz (0.4 mm) HCN solid-state MAS probe, the latest innovations in solid-state NMR for the study of biological systems. These tests confirmed the applicability of the 1.3 GHz NMR first-of-a-kind spectrometer, yielding high-resolution liquids and solids NMR spectra at 1.3 GHz. The results demonstrated increased resolution and sensitivity, highlighting the potential for groundbreaking biomolecular and materials research.

The increased magnet field strength particularly benefits spectroscopy of bio-macromolecules lacking dispersion, such as carbohydrates, glycoproteins, RNA, and intrinsically disordered proteins (IDPs) without secondary and tertiary structures. Direct 13C and 15N detection of IDPs shows the gain of 1.3 GHz sensitivity, offering new strategies to obtain atomic resolution with respect to dynamics and function. In solid state, UHF NMR is crucial for studying quadrupolar nuclei, where the increased field leads to narrower spectral lines due to the inverse relationship between the breadth of the quadrupolar pattern and the field strength. Additionally, the chemical shift interaction grows linearly with the field, enhancing the ability to measure chemical shift tensors using UHF systems. These technological advancements are driving exciting breakthroughs in both material science and biological science.

"Achieving 1.3 GHz is yet another testament to Bruker's commitment to innovation," said Dr. Falko Busse, President of the Bruker BioSpin Group. "We are confident that our high-resolution GHz-class NMRs enable researchers to advance their scientific understanding of complex biomolecular systems, and also provide substantial benefits for advanced materials science research, particularly in molecules and materials incorporating chemical elements with quadrupolar and low-gamma nuclei."

"We are thrilled to be among the first scientists to experiment with the 1.3 GHz NMR spectrometer," said Dr. Takanori Kigawa from the Center for Integrative Medical Sciences of the RIKEN Yokohama Institute, Japan, a leading researcher in structural biology. "The gain in resolution and sensitivity is truly remarkable. We were blown away by the level of detail we observe in our protein and nucleic acid samples, which opens up new opportunities for our research in biological systems.”

Dr. Pierre Florian, materials science researcher at CEMHTI-CNRS Orléans, France, who ran solid-state samples for characterization, stated: "I am very impressed with the first experiments carried out on the 1.3 GHz spectrometer. This technology dramatically improves our ability to resolve different types of atomic environments in complex materials and also offers unprecedented sensitivity."

About Bruker Corporation – Leader of the Post-Genomic Era (Nasdaq: BRKR)

Bruker is enabling scientists and engineers to make breakthrough post-genomic discoveries and develop new applications that improve the quality of human life. Bruker’s high performance scientific instruments and high value analytical and diagnostic solutions enable scientists to explore life and materials at molecular, cellular, and microscopic levels. In close cooperation with our customers, Bruker is enabling innovation, improved productivity, and customer success in post-genomic life science molecular and cell biology research, in applied and biopharma applications, in microscopy and nanoanalysis, as well as in industrial and cleantech research, and next-gen semiconductor metrology in support of AI. Bruker offers differentiated, high-value life science and diagnostics systems and solutions in preclinical imaging, clinical phenomics research, proteomics and multiomics, spatial and single-cell biology, functional structural and condensate biology, as well as in clinical microbiology and molecular diagnostics. For more information, please visit www.bruker.com.

Investor Contact:

Joe Kostka

Director - Investor Relations

Bruker Corporation

T: +1 (978) 313-5800

E: Investor.Relations@bruker.com

Media Contact:

Markus Ziegler

Sr. Director and Head of Group Marketing

Bruker BioSpin

T: +49 172 373-3531

E: pr@bruker.com

Source: Bruker Corporation

FAQ

What are the key specifications of Bruker's new 1.3 GHz NMR spectrometer?

The spectrometer features a 30.5 Tesla field strength, 54mm standard-bore superconducting magnet, and uses ReBCO high-temperature superconductor insert technology.

How does BRKR's 1.3 GHz NMR system compare to previous models?

It maintains similar physical dimensions and cryogen consumption as 1.2 GHz magnets, while offering higher resolution and sensitivity for both liquids and solids NMR spectra.

What research applications benefit from Bruker's 1.3 GHz NMR technology?

The system benefits research on bio-macromolecules like carbohydrates, glycoproteins, RNA, and intrinsically disordered proteins, plus advanced materials science applications.

What testing configurations were used to validate BRKR's 1.3 GHz NMR system?

Five configurations were tested: 3mm TXI liquids probe, 5mm TXO liquids CryoProbe, 111kHz HCN solid-state probe, 42kHz solid-state probe, and 160kHz HCN solid-state probe.
Bruker Corp

NASDAQ:BRKR

BRKR Rankings

BRKR Latest News

BRKR Stock Data

5.27B
103.25M
31.91%
82.83%
3.76%
Medical Devices
Laboratory Analytical Instruments
Link
United States
BILLERICA