STOCK TITAN

WiMi is Researching Edge Detection Algorithm Based on Deep Learning and Image Fusion

Rhea-AI Impact
(Neutral)
Rhea-AI Sentiment
(Very Positive)
Tags
Rhea-AI Summary
WiMi Hologram Cloud Inc. is researching an edge detection algorithm based on deep learning and image fusion to improve accuracy and efficiency. The algorithm uses a convolutional neural network for feature extraction and abstracts image information into higher-level semantic features. It also utilizes image fusion methods to optimize edge detection results. WiMi's algorithm has technical features such as a deep learning model, image fusion technology, adaptive learning, high efficiency, and parallel computing.
Positive
  • None.
Negative
  • None.

BEIJING, Aug. 17, 2023 /PRNewswire/ -- WiMi Hologram Cloud Inc. (NASDAQ: WIMI) ("WiMi" or the "Company"), a leading global Hologram Augmented Reality ("AR") Technology provider, today announced that edge detection algorithm based on deep learning and image fusion is being researched to improve the accuracy and efficiency of edge detection through multi-scale analysis and feature extraction of images, and to improve the edge detection and its accuracy.

This is an algorithm utilizing deep learning techniques and image fusion methods for edge detection. Specifically, the algorithm uses a convolutional neural network to perform feature extraction on the original image and abstracts the image information into higher-level semantic features through multi-layer convolution and pooling operations. These features are then utilized for edge detection to improve the accuracy of edge detection. After completing the initial edge detection, the algorithm will also use image fusion methods to further optimize the edge detection results. Multiple edge detection results are synthesized to obtain more accurate edge information. Each pixel is labeled according to the different edge detection results, and the final edge location is determined based on the labeling of the pixel.

The process of the edge detection algorithm mainly includes the following steps: firstly, the image needs to be analyzed at multiple dimensions, and divided into multiple dimensions, each of which contains edge information of different sizes and shapes. This can help the algorithm to better capture the edge information in the image and improve the detection accuracy. For each dimension, features need to be extracted from the image. WiMi uses a deep convolutional neural network (CNN) as a feature extractor, which inputs the image into the network and extracts the image features through multiple convolutional and pooling layers, which can help the algorithm to better identify the edge information in the image and filter out some irrelevant information. By fusing image features of different dimensions, more comprehensive and accurate edge information can be obtained. Image fusion technique is used to fuse feature images of different scales by some weighting coefficients and use convolution operation for edge detection, which can better capture the edge information and improve the detection accuracy and efficiency.

WiMi's edge detection algorithm based on deep learning and image fusion has various technical features such as a deep learning model, image fusion technology, adaptive learning, high efficiency and parallel computing, which make the algorithm of high research value and practical significance in the field of edge detection. It utilizes a deep learning model for feature extraction, and abstracts the information in the original image into higher-level semantic features through multi-layer CNN, making edge detection more accurate. At the same time, it improves the accuracy of edge detection by combining the results of multiple edge detection results, and optimizes the results using image fusion technology to improve the robustness of edge detection. In addition, it adopts an adaptive learning method, which can adjust the parameters according to different scenes and data sets to further improve the effect of the algorithm. And it can effectively deal with large-scale image data, and at the same time, it has a faster speed to meet real-time requirements, and it adopts parallel computing methods to make full use of computer hardware resources to improve the efficiency and performance of the algorithm.

The algorithm is widely used in the field of computer vision due to its high accuracy and robustness, for example, for object recognition, video analysis, image segmentation, automatic driving, medical image processing and so on. In the future, WiMi will continue to explore innovative applications based on deep learning and image processing technologies to further improve the accuracy, efficiency and applicability of edge detection algorithm, and to promote the change of image processing technologies.

About WIMI Hologram Cloud

WIMI Hologram Cloud, Inc. (NASDAQ:WIMI) is a holographic cloud comprehensive technical solution provider that focuses on professional areas including holographic AR automotive HUD software, 3D holographic pulse LiDAR, head-mounted light field holographic equipment, holographic semiconductor, holographic cloud software, holographic car navigation and others. Its services and holographic AR technologies include holographic AR automotive application, 3D holographic pulse LiDAR technology, holographic vision semiconductor technology, holographic software development, holographic AR advertising technology, holographic AR entertainment technology, holographic ARSDK payment, interactive holographic communication and other holographic AR technologies.

Safe Harbor Statements

This press release contains "forward-looking statements" within the Private Securities Litigation Reform Act of 1995. These forward-looking statements can be identified by terminology such as "will," "expects," "anticipates," "future," "intends," "plans," "believes," "estimates," and similar statements. Statements that are not historical facts, including statements about the Company's beliefs and expectations, are forward-looking statements. Among other things, the business outlook and quotations from management in this press release and the Company's strategic and operational plans contain forward−looking statements. The Company may also make written or oral forward−looking statements in its periodic reports to the US Securities and Exchange Commission ("SEC") on Forms 20−F and 6−K, in its annual report to shareholders, in press releases, and other written materials, and in oral statements made by its officers, directors or employees to third parties. Forward-looking statements involve inherent risks and uncertainties. Several factors could cause actual results to differ materially from those contained in any forward−looking statement, including but not limited to the following: the Company's goals and strategies; the Company's future business development, financial condition, and results of operations; the expected growth of the AR holographic industry; and the Company's expectations regarding demand for and market acceptance of its products and services.

Further information regarding these and other risks is included in the Company's annual report on Form 20-F and the current report on Form 6-K and other documents filed with the SEC. All information provided in this press release is as of the date of this press release. The Company does not undertake any obligation to update any forward-looking statement except as required under applicable laws.

Cision View original content:https://www.prnewswire.com/news-releases/wimi-is-researching-edge-detection-algorithm-based-on-deep-learning-and-image-fusion-301903433.html

SOURCE WiMi Hologram Cloud Inc.

FAQ

What is WiMi Hologram Cloud Inc. researching?

WiMi Hologram Cloud Inc. is researching an edge detection algorithm based on deep learning and image fusion.

How does the algorithm improve accuracy and efficiency?

The algorithm uses a convolutional neural network for feature extraction and abstracts image information into higher-level semantic features. It also utilizes image fusion methods to optimize edge detection results.

What are the technical features of WiMi's algorithm?

WiMi's algorithm has technical features such as a deep learning model, image fusion technology, adaptive learning, high efficiency, and parallel computing.

What are the potential applications of the algorithm?

The algorithm can be used for object recognition, video analysis, image segmentation, automatic driving, medical image processing, and more.

WiMi Hologram Cloud Inc. American Depositary Share

NASDAQ:WIMI

WIMI Rankings

WIMI Latest News

WIMI Stock Data

117.85M
88.15M
0.92%
0.28%
Advertising Agencies
Communication Services
Link
United States of America
Beijing