WiMi Developed a Hybrid Bio-Signal-Based Brain-Computer Interface
- WiMi's HBS-BCI technology improves classification accuracy and reduces brain command detection time, enhancing the user experience.
- The integration of multiple biological signals allows for a richer and more natural interaction experience.
- The HBS-BCI technology increases the number of control commands, expanding the application domain.
- Current sensors need to be taped or fixed to the scalp, limiting practical application and user comfort.
- Real-time application of HBS-BCI technology still faces challenges in detecting and interpreting brain commands quickly and accurately.
The core of WiMi's HBS-BCI technology is the integration of multiple biological signals, including electroencephalogram (EEG), functional near-infrared spectroscopy (fNIRS), electromyography (EMG), electrooculogram (EOG), and eye tracker. By integrating these biological signals, the HBS-BCI technology is able to acquire multi-modal and multi-perspective user information about the user's intent and cognitive state through different perspectives and dimensions, thus improving classification accuracy, increasing the number of commands and reducing brain command detection time for brain-computer interfaces. This innovative approach to signal integration provides users with a richer and more natural interaction experience.
EEG: Electroencephalography is the recording of electrical signals from the brain's electrical activity by means of an array of electrodes placed on the scalp. It is widely used in brain-computer interfaces because of its high temporal resolution and low cost.EEG signals reflect the electrical activity of neurons in the brain and can capture different types of brain activity such as motor imagery, cognitive tasks, and response tasks.
fNIRS: Functional near-infrared spectroscopy is a technique for indirectly assessing brain activity by measuring changes in blood oxygenation levels in the cerebral cortex. It uses transmitters and receivers to light and detect areas of the brain, measuring changes in cerebral blood oxygenation and deoxyhemoglobin. fNIRS provides information that is complementary to EEG, with better spatial resolution and higher wearability.
EMG: Electromyography records electrical activity during muscle contraction and relaxation. In the HBS-BCI, EMG signals can be used to recognize and control commands related to muscle activity, such as limb movements.
EOG and eye tracker: Electrooculograms record the electrical activity of the eye muscles and can be used to detect eye movements and gaze positions. Ophthalmoscopes, on the other hand, can more precisely measure and record the trajectory of eye movements and gaze points. These signals can be used in HBS-BCI technology for control and interaction, such as selecting commands or operating interfaces by looking at specific areas.
The components of WiMi's HBS-BCI technology include a data acquisition system, signal processing and feature extraction, paradigm design and task setup, classifiers and recognition algorithms, real-time applications and feedback, as well as associated hardware and equipment. The data acquisition system consists of multiple electrodes, transmitters and receivers, and sensors for acquiring different biological signals. The signal processing and feature extraction phase filters, denoises and extracts features from the acquired biological signals to obtain meaningful information. Paradigm design and task setup determine the specific activities or tasks to be accomplished by the user in the brain-computer interface task. Classifiers and recognition algorithms identify and classify the user's intentions or commands from the extracted features by training and building models. Real-time applications and feedback ensure seamless interaction between the user and the external device or system and provide timely feedback to help the user adjust and improve the brain commands.
WiMi's HBS-BCI technology has significant advantages over traditional single biosignal brain-computer interfaces. First, by integrating multiple biosignals, the HBS-BCI technology is able to improve classification accuracy, resulting in more accurate intent recognition and command classification. This enables users to control external devices or systems more reliably and improve interaction efficiency. Second, HBS-BCI technology is able to increase the number of control commands, thus expanding the application domain. Users can generate more commands through different tasks and paradigms, enabling more diverse control and operations. HBS-BCI technology also reduces the time for brain command detection, providing more immediate response and feedback. This enables users to interact with the external environment more fluidly and enjoy a more natural and seamless experience.
Although HBS-BCI has made significant progress in improving the performance of brain-computer interfaces, it still faces some challenges. Current sensors need to be taped or fixed to the scalp, limiting the practical application of the technology and user comfort. In addition, the real-time application of HBS-BCI technology still faces some challenges. Detecting and interpreting brain commands quickly and accurately remains a challenging task due to the noise and complexity of biological signals. Future developments will continue to optimize user devices as well as develop efficient signal processing and machine learning algorithms to make real-time applications feasible.
In addition to the basic application of HBS-BCI technology, WiMi will further research and develop HBS-BCI to promote its real-time application in daily life scenarios. WiMi's R&D team will continue to improve the classifier and recognition algorithms, and to enhance the system's intelligence and adaptive capability to achieve more accurate and efficient command recognition. WiMi plans to collaborate with partners in different fields. In the future, HBS-BCI technology has the potential to be integrated with other cutting-edge technologies, such as virtual reality, augmented reality and artificial intelligence. By integrating with these technologies, a more immersive and intelligent brain-computer interface system can be created, providing users with a richer and more personalized experience, and bringing more rich application experiences to users.
About WIMI Hologram Cloud
WIMI Hologram Cloud, Inc. (NASDAQ:WIMI) is a holographic cloud comprehensive technical solution provider that focuses on professional areas including holographic AR automotive HUD software, 3D holographic pulse LiDAR, head-mounted light field holographic equipment, holographic semiconductor, holographic cloud software, holographic car navigation and others. Its services and holographic AR technologies include holographic AR automotive application, 3D holographic pulse LiDAR technology, holographic vision semiconductor technology, holographic software development, holographic AR advertising technology, holographic AR entertainment technology, holographic ARSDK payment, interactive holographic communication and other holographic AR technologies.
Safe Harbor Statements
This press release contains "forward-looking statements" within the Private Securities Litigation Reform Act of 1995. These forward-looking statements can be identified by terminology such as "will," "expects," "anticipates," "future," "intends," "plans," "believes," "estimates," and similar statements. Statements that are not historical facts, including statements about the Company's beliefs and expectations, are forward-looking statements. Among other things, the business outlook and quotations from management in this press release and the Company's strategic and operational plans contain forward−looking statements. The Company may also make written or oral forward−looking statements in its periodic reports to the US Securities and Exchange Commission ("SEC") on Forms 20−F and 6−K, in its annual report to shareholders, in press releases, and other written materials, and in oral statements made by its officers, directors or employees to third parties. Forward-looking statements involve inherent risks and uncertainties. Several factors could cause actual results to differ materially from those contained in any forward−looking statement, including but not limited to the following: the Company's goals and strategies; the Company's future business development, financial condition, and results of operations; the expected growth of the AR holographic industry; and the Company's expectations regarding demand for and market acceptance of its products and services.
Further information regarding these and other risks is included in the Company's annual report on Form 20-F and the current report on Form 6-K and other documents filed with the SEC. All information provided in this press release is as of the date of this press release. The Company does not undertake any obligation to update any forward-looking statement except as required under applicable laws.
View original content:https://www.prnewswire.com/news-releases/wimi-developed-a-hybrid-bio-signal-based-brain-computer-interface-301964233.html
SOURCE WiMi Hologram Cloud Inc.
FAQ
What is HBS-BCI technology?
What are the advantages of WiMi's HBS-BCI technology?
What challenges does HBS-BCI technology face?