WiMi Developed a Blockchain Empowered Asynchronous Federated Learning for Optimizing Model Training
WiMi Hologram Cloud Inc. (NASDAQ: WIMI) has developed a blockchain-based asynchronous federated learning (BAFL) framework. This innovative system combines blockchain technology with asynchronous learning mechanisms to create a secure and efficient federated learning environment. Key features include:
1. Enhanced security through blockchain's decentralization and immutability
2. Improved efficiency via asynchronous learning, allowing flexible model updates
3. Better adaptability for devices with resources or poor network conditions
BAFL aims to address data silo issues, improve model training efficiency, and protect data security and privacy. It shows promising applications in healthcare, finance, and smart manufacturing sectors, potentially driving AI model training into a new era of increased security and efficiency.
WiMi Hologram Cloud Inc. (NASDAQ: WIMI) ha sviluppato un framework di apprendimento federato asincrono basato su blockchain (BAFL). Questo sistema innovativo combina la tecnologia blockchain con meccanismi di apprendimento asincrono per creare un ambiente di apprendimento federato sicuro ed efficiente. Le caratteristiche principali includono:
1. Maggiore sicurezza grazie alla decentralizzazione e all'immutabilità della blockchain
2. Migliore efficienza attraverso l'apprendimento asincrono, consentendo aggiornamenti dei modelli flessibili
3. Maggiore adattabilità per dispositivi con risorse limitate o condizioni di rete scadenti
BAFL mira a risolvere i problemi dei silos di dati, migliorare l'efficienza della formazione dei modelli e proteggere la sicurezza e la privacy dei dati. Mostra applicazioni promettenti nei settori della salute, della finanza e della produzione intelligente, potenzialmente guidando la formazione dei modelli di IA in una nuova era di maggiore sicurezza ed efficienza.
WiMi Hologram Cloud Inc. (NASDAQ: WIMI) ha desarrollado un marco de aprendizaje federado asincrónico basado en blockchain (BAFL). Este sistema innovador combina la tecnología blockchain con mecanismos de aprendizaje asincrónico para crear un entorno de aprendizaje federado seguro y eficiente. Las características clave incluyen:
1. Mayor seguridad mediante la descentralización e inmutabilidad de la blockchain
2. Mejora de la eficiencia a través del aprendizaje asincrónico, permitiendo actualizaciones flexibles de modelos
3. Mejor adaptabilidad para dispositivos con recursos limitados o condiciones de red deficientes
BAFL tiene como objetivo abordar los problemas de los silos de datos, mejorar la eficiencia de la formación de modelos y proteger la seguridad y privacidad de los datos. Muestra aplicaciones prometedoras en los sectores de la salud, las finanzas y la fabricación inteligente, lo que podría impulsar la formación de modelos de IA hacia una nueva era de mayor seguridad y eficiencia.
WiMi Hologram Cloud Inc. (NASDAQ: WIMI)는 블록체인 기반 비동기 연합 학습 프레임워크(BAFL)를 개발했습니다. 이 혁신적인 시스템은 블록체인 기술과 비동기 학습 메커니즘을 결합하여 안전하고 효율적인 연합 학습 환경을 만듭니다. 주요 특징은 다음과 같습니다:
1. 블록체인의 분산화와 불변성으로 인한 향상된 보안
2. 유연한 모델 업데이트를 가능하게 하는 비동기 학습을 통한 효율성 향상
3. 자원이 부족하거나 네트워크 조건이 좋지 않은 장치에 대한 향상된 적응성
BAFL은 데이터 사일로 문제를 해결하고, 모델 학습 효율성을 개선하며, 데이터 보안 및 개인 정보 보호를 보호하는 것을 목표로 합니다. 헬스케어, 금융 및 스마트 제조 분야에서 유망한 응용 프로그램을 보여주며, AI 모델 학습을 더 높은 보안과 효율성의 새로운 시대로 이끌 가능성이 있습니다.
WiMi Hologram Cloud Inc. (NASDAQ: WIMI) a développé un cadre d'apprentissage fédéré asynchrone basé sur la blockchain (BAFL). Ce système innovant allie la technologie blockchain à des mécanismes d'apprentissage asynchrone pour créer un environnement d'apprentissage fédéré sûr et efficace. Les caractéristiques clés comprennent :
1. Sécurité accrue grâce à la décentralisation et à l'immutabilité de la blockchain
2. Efficacité améliorée via l'apprentissage asynchrone, permettant des mises à jour flexibles des modèles
3. Meilleure adaptabilité pour les appareils disposant de ressources limitées ou de mauvaises conditions réseau
BAFL vise à résoudre les problèmes de silos de données, à améliorer l'efficacité de l'entraînement des modèles et à protéger la sécurité et la vie privée des données. Il montre des applications prometteuses dans les secteurs de la santé, de la finance et de la fabrication intelligente, conduisant potentiellement l'entraînement des modèles d'IA vers une nouvelle ère de sécurité et d'efficacité accrues.
WiMi Hologram Cloud Inc. (NASDAQ: WIMI) hat ein blockchain-basiertes asynchrones föderiertes Lernen (BAFL) Framework entwickelt. Dieses innovative System kombiniert Blockchain-Technologie mit asynchronen Lernmechanismen, um eine sichere und effiziente Umgebung für föderiertes Lernen zu schaffen. Zu den Hauptmerkmalen gehören:
1. Verbesserte Sicherheit durch Dezentralisierung und Unveränderbarkeit der Blockchain
2. Höhere Effizienz durch asynchrones Lernen, das flexible Modellaktualisierungen ermöglicht
3. Bessere Anpassungsfähigkeit für Geräte mit begrenzten Ressourcen oder schlechten Netzwerkbedingungen
BAFL zielt darauf ab, Probleme mit Datensilos zu lösen, die Effizienz des Modelltrainings zu verbessern und die Datensicherheit und -privatsphäre zu schützen. Es zeigt vielversprechende Anwendungen in den Bereichen Gesundheitswesen, Finanzen und intelligente Fertigung und könnte das Training von KI-Modellen in eine neue Ära erhöhter Sicherheit und Effizienz führen.
- Development of an innovative blockchain-based asynchronous federated learning (BAFL) framework
- Potential to improve efficiency and security in AI model training
- Broad application prospects in healthcare, finance, and smart manufacturing sectors
- None.
Blockchain, with its decentralization, immutability and transparency, has become an important means to guarantee the security of federated learning systems. In BAFL, blockchain records the history of each model update to ensure the integrity and traceability of model data and prevent malicious tampering. Meanwhile, the consensus mechanism of blockchain can identify and exclude abnormal behaviors and enhance the system's ability to resist poisoning attacks.
Compared to traditional synchronous federated learning, asynchronous learning allows participating devices to flexibly upload model updates according to their conditions without waiting for all devices to complete a training round. This mechanism can significantly improve the flexibility and efficiency of the learning process, especially in environments with high network latency or limited communication between devices. The asynchronous learning mechanism avoids the limitation of waiting for all devices to complete training, speeds up global model aggregation, and can improve the overall learning efficiency. In addition, the asynchronous mode allows devices to participate in learning under poor network conditions or limited resources, which makes the system more adaptable and enhances its popularity.
WiMi's BAFL aims to solve the problem of data silos and improve the efficiency of model training while safeguarding data security and privacy, which not only solves the inherent security and efficiency problems of federated learning, but also opens up a new path for the distributed training of AI models, and is expected to drive data-driven intelligent applications into a new stage of greater security and efficiency. The blockchain-based asynchronous federated learning framework also shows broad application prospects in various fields such as healthcare, finance, and smart manufacturing. For example, in the healthcare field, hospitals and research institutions, BAFL can be used to share medical record data for joint training of disease prediction and diagnostic models, while protecting patient privacy. In the financial sector, banks and financial institutions can use BAFL to train credit risk assessment models and improve the accuracy of risk identification while complying with data protection regulations. In smart manufacturing, industrial equipment manufacturers can use BAFL to optimize production processes and achieve predictive maintenance and quality control by analyzing data from different factories without fear of data leakage. In the future, BAFL will be a comprehensive technology ecosystem that involves collaborative innovation at multiple levels, including algorithms, hardware, software, policy and marketing.
About WIMI Hologram Cloud
WIMI Hologram Cloud, Inc. (NASDAQ:WIMI) is a holographic cloud comprehensive technical solution provider that focuses on professional areas including holographic AR automotive HUD software, 3D holographic pulse LiDAR, head-mounted light field holographic equipment, holographic semiconductor, holographic cloud software, holographic car navigation and others. Its services and holographic AR technologies include holographic AR automotive application, 3D holographic pulse LiDAR technology, holographic vision semiconductor technology, holographic software development, holographic AR advertising technology, holographic AR entertainment technology, holographic ARSDK payment, interactive holographic communication and other holographic AR technologies.
Safe Harbor Statements
This press release contains "forward-looking statements" within the Private Securities Litigation Reform Act of 1995. These forward-looking statements can be identified by terminology such as "will," "expects," "anticipates," "future," "intends," "plans," "believes," "estimates," and similar statements. Statements that are not historical facts, including statements about the Company's beliefs and expectations, are forward-looking statements. Among other things, the business outlook and quotations from management in this press release and the Company's strategic and operational plans contain forward−looking statements. The Company may also make written or oral forward−looking statements in its periodic reports to the US Securities and Exchange Commission ("SEC") on Forms 20−F and 6−K, in its annual report to shareholders, in press releases, and other written materials, and in oral statements made by its officers, directors or employees to third parties. Forward-looking statements involve inherent risks and uncertainties. Several factors could cause actual results to differ materially from those contained in any forward−looking statement, including but not limited to the following: the Company's goals and strategies; the Company's future business development, financial condition, and results of operations; the expected growth of the AR holographic industry; and the Company's expectations regarding demand for and market acceptance of its products and services.
Further information regarding these and other risks is included in the Company's annual report on Form 20-F and the current report on Form 6-K and other documents filed with the SEC. All information provided in this press release is as of the date of this press release. The Company does not undertake any obligation to update any forward-looking statement except as required under applicable laws.
View original content:https://www.prnewswire.com/news-releases/wimi-developed-a-blockchain-empowered-asynchronous-federated-learning-for-optimizing-model-training-302242119.html
SOURCE WiMi Hologram Cloud Inc.
FAQ
What is the new technology developed by WiMi Hologram Cloud (WIMI)?
How does BAFL improve on traditional federated learning systems?
What are the potential applications of WiMi's BAFL technology?