STOCK TITAN

WiMi Announced a Recommendation Model Based on Heterogeneous Information Network

Rhea-AI Impact
(Neutral)
Rhea-AI Sentiment
(Neutral)
Tags
Rhea-AI Summary
WiMi Hologram Cloud Inc. has developed a recommendation model based on heterogeneous information network (HIN) to improve personalized recommendations. The model addresses problems like data sparsity and misleading information extraction. It utilizes meta-paths to describe relationships between users and items, reducing data sparsity. It adopts a unified embedding approach to capture user and item characteristics more comprehensively. The model also quantifies user preferences for meta-paths, improving the effectiveness of recommendations. WiMi is exploring new learning methods and strategies to further improve the model's performance.
Positive
  • WiMi Hologram Cloud Inc. has developed a breakthrough recommendation model based on HIN to improve personalized recommendations.
  • The model addresses problems like data sparsity and misleading information extraction, providing more accurate recommendation results.
  • The model utilizes meta-paths to describe relationships between users and items, reducing data sparsity and improving recommendation accuracy.
  • WiMi is exploring new learning methods and strategies to further improve the model's performance.
Negative
  • None.

BEIJING, Oct. 26, 2023 /PRNewswire/ -- WiMi Hologram Cloud Inc. (NASDAQ: WIMI) ("WiMi" or the "Company"), a leading global Hologram Augmented Reality ("AR") Technology provider, today announced that a recommendation model based on heterogeneous information network (HIN) has been developed, bringing a breakthrough in the personalized recommendation. The recommendation model based on HIN, which consists of different types of nodes and multiple types of relationships, can better portray complex relationships in the real world.

The recommendation model based on HIN aims to solve the problems of current Internet recommendation models, including data sparsity, misleading information extraction, and loss of recommended useful information. These problems are challenging for traditional recommendation models, and WiMi's HIN-based recommendation model can solve these problems.

Data sparsity is a common problem nowadays, especially in the case of limited user behavior data. Traditional recommendation models such as collaborative filtering have difficulty in accurately capturing user interests and preferences. This model can alleviate the problem of data sparsity by utilizing multiple meta-paths to describe the relationship between users and items, which can be used to alleviate the data sparsity problem by transferring information across meta-paths. Even if there is a lack of user-item interaction information on some meta-paths, the model is able to make recommendations through the associated information on other paths.

Misleading information extraction is also a challenge that needs to be addressed in traditional recommendation models, as they usually model users and items in isolation under each meta-path, resulting in potentially misleading information extraction. The recommendation model based on HIN adopts a unified embedding approach, which describes users and items under different meta-paths through common feature characteristics. This approach reduces misleading information extraction and captures user and item characteristics more comprehensively, thus providing more accurate recommendation results.

When exploring heterogeneous information networks, current traditional recommendation models usually only consider the structural features of the information network, ignoring the potentially useful information in it. The recommendation model based on HIN uniformly embeds users, items and meta-paths into the relevant potential space by learning node embedding vectors. In this way, the model can better quantify the user's preference for meta-paths, thus improving the effectiveness of personalized recommendations and avoiding the irreversible loss of useful information. WiMi's HIN-based recommendation model can effectively solve the problems of the current Internet recommendation models and improve the accuracy, degree of personalization, and user experience of recommendations. The model can make full use of the relationships and features in the heterogeneous information network to provide users with more accurate and valuable recommendation results.

The recommendation model based on HIN implementation consists of the following key steps:

Data processing: First, the data in the heterogeneous information network needs to be pre-processed. This includes encoding the representations of users, items, and relationships, e.g., converting them into numerical or vector form for use in the model. Also, a meta-path graph needs to be constructed for describing the relationships between nodes.

Meta-path selection: In HIN, meta-paths are paths describing the relationships between nodes. According to the specific recommendation task and data characteristics, a suitable meta-path needs to be selected. The selection of meta-path should be based on domain knowledge and experience, aiming to capture the relevance between users and items.

Node Embedding Learning: Next, the embedding vectors of the nodes need to be learned to represent the features of users and items under different meta-paths. Embedding learning methods can include deep learning-based methods as well as matrix decomposition-based methods such as matrix decomposition models.

Relationship modeling and feature fusion: in this step, the model uses the learned node embedding vectors to model the relationships between nodes. By considering the interrelationships between meta-paths, feature information under different meta-paths can be fused. Commonly used approaches include using an attention mechanism to model the weights of different meta-paths to better capture the correlations between nodes.

Personalized recommendation: finally, the learned node embedding vectors and relationship modeling results are used for personalized recommendations. By measuring user preferences for different meta-paths, more accurate and personalized recommendation results can be provided. Commonly used recommendation algorithms include content-based recommendation and collaborative filtering algorithms.

To further improve the performance of the model, WiMi is also exploring new embedded learning methods, relationship modeling, and feature fusion strategies. By improving the model's representation capabilities and learning algorithms, the features of users and items can be better captured and provide more accurate recommendation results. Despite the significant progress made in the model so far, there are still some challenges and research directions. For example, how to better select and utilize meta-paths, how to handle large-scale and dynamic HIN data, and how to further improve the efficiency and stability of the model. These issues provide rich opportunities and challenges for applied research of the technology. With the application of the model and further research, it is reasonable to believe that recommendation models based on heterogeneous information networks will play an important role in the field of personalized recommendation.

Meanwhile, WiMi's recommendation model based on HIN has a wide range of application prospects, which is not limited to the traditional e-commerce and social media fields. With the development of intelligent technology, the model can be applied to more fields, such as smart home, online education and healthcare. It can also be extended to multiple platforms, including mobile apps, smart devices and IoT. It provides a more accurate, personalized and interpretable recommendation method by leveraging the relationships and features in HIN. With further research and applications, the field of personalized recommendation will usher in breakthroughs and innovations to provide users with a better recommendation experience.

About WIMI Hologram Cloud

WIMI Hologram Cloud, Inc. (NASDAQ:WIMI) is a holographic cloud comprehensive technical solution provider that focuses on professional areas including holographic AR automotive HUD software, 3D holographic pulse LiDAR, head-mounted light field holographic equipment, holographic semiconductor, holographic cloud software, holographic car navigation and others. Its services and holographic AR technologies include holographic AR automotive application, 3D holographic pulse LiDAR technology, holographic vision semiconductor technology, holographic software development, holographic AR advertising technology, holographic AR entertainment technology, holographic ARSDK payment, interactive holographic communication and other holographic AR technologies.

Safe Harbor Statements

This press release contains "forward-looking statements" within the Private Securities Litigation Reform Act of 1995. These forward-looking statements can be identified by terminology such as "will," "expects," "anticipates," "future," "intends," "plans," "believes," "estimates," and similar statements. Statements that are not historical facts, including statements about the Company's beliefs and expectations, are forward-looking statements. Among other things, the business outlook and quotations from management in this press release and the Company's strategic and operational plans contain forward−looking statements. The Company may also make written or oral forward−looking statements in its periodic reports to the US Securities and Exchange Commission ("SEC") on Forms 20−F and 6−K, in its annual report to shareholders, in press releases, and other written materials, and in oral statements made by its officers, directors or employees to third parties. Forward-looking statements involve inherent risks and uncertainties. Several factors could cause actual results to differ materially from those contained in any forward−looking statement, including but not limited to the following: the Company's goals and strategies; the Company's future business development, financial condition, and results of operations; the expected growth of the AR holographic industry; and the Company's expectations regarding demand for and market acceptance of its products and services.

Further information regarding these and other risks is included in the Company's annual report on Form 20-F and the current report on Form 6-K and other documents filed with the SEC. All information provided in this press release is as of the date of this press release. The Company does not undertake any obligation to update any forward-looking statement except as required under applicable laws.

 

Cision View original content:https://www.prnewswire.com/news-releases/wimi-announced-a-recommendation-model-based-on-heterogeneous-information-network-301968571.html

SOURCE WiMi Hologram Cloud Inc.

FAQ

What is the recommendation model developed by WiMi Hologram Cloud Inc. based on?

The recommendation model is based on a heterogeneous information network (HIN).

What problems does the model address?

The model addresses problems like data sparsity and misleading information extraction in traditional recommendation models.

How does the model reduce data sparsity?

The model utilizes meta-paths to describe relationships between users and items, transferring information across meta-paths to alleviate data sparsity.

What approach does the model adopt to capture user and item characteristics?

The model adopts a unified embedding approach to capture user and item characteristics more comprehensively.

What is WiMi exploring to improve the model's performance?

WiMi is exploring new learning methods and strategies to further improve the model's performance.

WiMi Hologram Cloud Inc. American Depositary Share

NASDAQ:WIMI

WIMI Rankings

WIMI Latest News

WIMI Stock Data

80.53M
88.15M
1.08%
0.8%
Advertising Agencies
Communication Services
Link
United States of America
Beijing