u-blox AG: Easier Access to Market's Best High Precision GNSS Positioning Performance
u-blox has launched new GNSS correction service receivers and upgraded its ZED-F9P receiver, facilitating reliable centimeter-level positioning for industrial navigation and robotics. The NEO-D9S and NEO-D9C receivers provide broad coverage across Europe, the US, and Japan, enhancing operational efficiency. The ZED-F9P-04B now supports secure SPARTN data format and features a protection level output for better positioning accuracy in autonomous applications. The products are aimed at making high precision positioning accessible for mass markets.
- Introduction of new GNSS correction receivers expands product offerings.
- Enhanced accuracy and reliability of positioning for robotic applications.
- Broad geographical coverage for correction services across Europe, the US, and Japan.
- Secure SPARTN correction data format implementation for improved data integrity.
- Protection level output feature to enhance trust and operational efficiency.
- None.
Two new GNSS correction service receivers and the firmware-upgraded ZED-F9P high precision GNSS receiver enable easy and scalable solutions to achieve reliable centimeter-level accuracies in seconds
THALWIL, SWITZERLAND / ACCESSWIRE / November 24, 2021 / u-blox (SIX:UBXN,OTC:UBLXF), a leading global provider of positioning and wireless communication technologies and services, has announced a suite of products and feature additions that simplify access to reliable centimeter-level positioning accuracies for the industrial navigation and robotics markets. The upgraded ZED-F9P high precision global navigation satellite system (GNSS) receiver module and the corresponding NEO-D9S and NEO-D9C GNSS correction data receivers offer customers unprecedented flexibility in assembling scalable solutions for their specific use case, including robotic lawnmowers, unmanned autonomous vehicles (UAV), and semi-automated or fully automated machinery.
New correction service receivers offer broad geographical coverage across Europe, the continental US, and Japan
The software-upgraded u-blox ZED-F9P-04B high precision GNSS receiver is the first to support a secure SPARTN GNSS correction data format. It further connects seamlessly to two new GNSS correction service receiver modules that stream correction data from communication satellites: The u-blox NEO-D9S will initially cover the European and US markets before rolling out to the other areas of the globe. Meanwhile, the u-blox NEO-D9C will cover Japan.
NEO-D9S receives correction data using the SSR SPARTN data format over the satellite L-band channel. It uses cryptography to securely deliver PPP-RTK GNSS correction data, such as that offered by u-blox's PointPerfect service .
NEO-D9C leverages the subscription-free Centimeter-Level Augmentation Service (CLAS) broadcast over mainland Japan provided by the Japanese QZSS (Quasi-Zenith Satellite System) constellation on the L6 band channel.
While u-blox GNSS receivers are designed to work with most correction services on the market, pairing the ZED-F9P with the NEO-D9C or the NEO-D9S correction data receiver enables customers to save data transmission cost and operational efforts.
New protection level output for increased efficiency and quality for robotic applications
Additionally, ZED-F9P-04B offers a new feature called protection level , which increases the trust applications can place in its position output. By continuously outputting the upper bound of the maximum likely positioning error, referred to as the protection level, the receiver lets autonomous applications, such as UAVs, make efficient real time path planning, increasing the quality of their operations.
In the case of robotic lawnmowers, the increased accuracy and reliability of the position will, for example, allow to do away with boundary wires, which today are buried under the turf to delimit the mowing area. Furthermore, it will allow lawnmowers to systematically cover a plot based on a digital map, as opposed to the random mowing approach that is commonly used today.
Bringing high precision positioning to the mass market
"At u-blox, we've long been focused on making high precision positioning technology more accessible for mass market applications. The ZED-F9P-04B together with the NEO-D9S and NEO-D9C GNSS correction data receivers all contribute to this goal by simplifying the design-in of secure high precision positioning, lowering its overall cost of ownership, and unifying the markets for GNSS correction services," says Alex Ngi, Product Manager Positioning at u‑blox.
First samples of these products are available today, in professional and automotive grade. The correction data receivers will be available in automotive grade for the automotive markets.
About u-blox
u-blox (SIX:UBXN) is a global technology leader in positioning and wireless communication in automotive, industrial, and consumer markets. Their smart and reliable solutions, services and products let people, vehicles, and machines determine their precise position and communicate wirelessly over cellular and short range networks. With a broad portfolio of chips, modules, and secure data services and connectivity, u-blox is uniquely positioned to empower its customers to develop innovative and reliable solutions for the Internet of Things, quickly and cost-effectively. With headquarters in Thalwil, Switzerland, the company is globally present with offices in Europe, Asia, and the USA. ( www.u-blox.com ) Find us on Facebook , LinkedIn , Twitter @ublox and YouTube
u-blox media contact:
Natacha Seitz
Senior Manager PR and Content Marketing
Mobile +41 76 436 0788
natacha.seitz@u-blox.com
SOURCE: u-blox AG
View source version on accesswire.com:
https://www.accesswire.com/674553/u-blox-AG-Easier-Access-to-Markets-Best-High-Precision-GNSS-Positioning-Performance
FAQ
What is the significance of u-blox's new GNSS correction service receivers?
How does the ZED-F9P-04B receiver improve positioning accuracy?
Which markets are covered by the new GNSS correction receivers?
What technology does the NEO-D9S use for correction data?