SQZ Biotechnologies Publishes Comprehensive Preclinical Research on SQZ® TAC Platform’s Ability to Induce Multiple Key Mechanisms of Antigen-Specific Tolerance and Protect Against Type 1 Diabetes
SQZ Biotechnologies has published preclinical research demonstrating the effectiveness of its Tolerizing Antigen Carrier (TAC) platform in combating autoimmune diseases, particularly type 1 diabetes (T1D). The study shows that TACs effectively delayed the onset of T1D, reduced autoreactive T cells, and induced regulatory T cells. The company plans to submit an IND for celiac disease in H1 2023 and is developing a point-of-care manufacturing system for clinical trials. The findings suggest a significant potential for TACs in therapy for autoimmune diseases.
- TACs demonstrated the ability to significantly delay T1D onset to a median of 65 days versus 8 days in controls.
- Induction of regulatory T cells increased approximately 5-fold in treated models, indicating a robust immune response.
- TACs reduced disease-driving T cells significantly, with reductions up to 375-fold in proinflammatory cytokine levels.
- None.
Tolerizing Antigen Carriers (TACs) Shown Preclinically to Combat Autoimmunity Through Deletion of Autoreactive T Cells, Anergy and Induction of Regulatory T Cells that Facilitate Potent Bystander Suppression
Demonstrated Durable Protection Against Hyperglycemia in a Type 1 Diabetes Model
TAC IND Submission for Celiac Disease Anticipated in First Half of 2023; Production of Clinical Trial Batches Planned on Point-of-Care Manufacturing System
The research findings are part of the body of work that will support the company’s anticipated
“We are excited to publish this comprehensive data set that demonstrates how in preclinical models SQZ TACs can induce multiple mechanisms of antigen-specific tolerance with long-lasting effects,” said
“We have been proud supporters of this important work to develop a new therapeutic platform to address a range of autoimmune diseases,” said
Current therapies for autoimmune diseases are focused on broad immunosuppression, which can limit efficacy and increase the risk of infection and cancer. Antigen-specific therapies that precisely target autoreactive T cells while sparing non-disease-causing immune cells could potentially be transformative for the treatment of autoimmune diseases.
SQZ TACs are a red blood cell (RBC)-derived engineered cell therapy candidate designed to leverage the naturally tolerogenic process of RBC clearance by professional antigen presenting cells (APCs). They are generated by engineering RBCs with disease-specific antigen using the Cell Squeeze® technology, and once engulfed by APCs are intended to induce tolerization of immune responses against the specific target.
The major findings in this publication include:
-
Disease Suppression
- TACs significantly delayed onset of disease to a median of 65 days compared to 8 days in controls in a T1D model driven by pathogenic CD4 T cells
- TACs prevented onset of T1D for all animals in a separate T1D model where disease was driven by pathogenic CD8 T cells
-
Reduction of Disease-Driving T Cells
- TACs reduced the frequency of disease-driving CD4 T cells in the pancreas 8-fold and decreased the secretion of proinflammatory cytokine interferon gamma – a major driver of disease in this model – by 126-fold
- The TACs also reduced disease-driving CD8 T cells in the pancreas by 54-fold and decreased secretion of proinflammatory cytokine interferon gamma by 375-fold
- In addition, there was a nearly 3-fold increase in antigen-specific apoptotic CD8 T cells in the pancreas
-
Increase in Regulatory T Cells
- In the T1D model driven by pathogenic CD4 T cells, antigen-specific Tregs in the pancreas increased by approximately 5-fold and the suppressor cytokine IL-10 by about 6-fold
-
Bystander Suppression
- In a model where both pathogenic CD4 and CD8 T cells were present, treatment with TACs that only contained the CD4 epitope demonstrated robust induction of Tregs and a 7-fold decrease in CD8 T cells of a different antigen specificity through bystander suppression
- In a second model, treatment with TACs encapsulating CD4 antigen alone induced antigen-specific Tregs that were able to confer complete protection against diabetes when the mice were challenged with polyclonal CD8 T cells from diabetic mice
About Celiac Disease
Celiac disease is a chronic autoimmune disorder that occurs in genetically predisposed people.i ii The disease is triggered by eating foods containing gluten, which is found in wheat, barley, and rye. Disease symptoms can include abdominal pain, diarrhea, nausea, vomiting, and other common signs. When gluten is ingested the body mounts an immune response that attacks and damages the villi that line the small intestine, which can impact nutrient absorption.iii Many people who have celiac disease have not been diagnosed,iv however population-based studies indicate that the disease affects about 2 million people in
About Type 1 Diabetes
Nearly 1.6 million Americans are living with type 1 diabetes (T1D), including about 1.4 million adults and 200,000 children and adolescents (<20 years). Five million people in the
About SQZ TACs
SQZ® TACs are a red blood cell-derived engineered cell therapy candidate being developed as an antigen-specific immune tolerance platform. The platform is designed to leverage the natural process of RBC clearance by professional antigen presenting cells (APCs) in the lymphoid organs, where they engulf aged RBCs and present their components to CD4 and CD8 T cells. This physiological mechanism is tolerogenic by default, instructing the immune system to not mount an attack. SQZ TACs are generated by engineering RBCs with disease-specific antigen using the Cell Squeeze® technology and are made to appear aged. SQZ TACs are designed to be rapidly engulfed in vivo by the patient’s professional APCs and to act as a “Trojan horse” to drive high quantities of antigen through the tolerogenic RBC clearance process, which may ultimately induce tolerization of the patient’s T cell and antibody responses against the specific target.
About
Forward Looking Statements
This press release contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. All statements contained that do not relate to matters of historical fact should be considered forward-looking statements, including without limitation, presentations and publications, our platform development, our product candidates, project funding, preclinical and clinical activities, outcomes and progress, development plans and execution, clinical safety and efficacy, regulatory submissions, therapeutic impact, anticipated data readouts, market opportunities and disease prevalence. These forward-looking statements are based on management’s current expectations. Actual results could differ from those projected in any forward-looking statements due to several risk factors. Such factors include, among others, risks and uncertainties related to our limited operating history; our significant losses incurred since inception and expectation to incur significant additional losses for the foreseeable future; the development of our initial product candidates, upon which our business is highly dependent; the impact of the COVID-19 pandemic on our operations and clinical activities; our need for additional funding and our cash runway; the lengthy, expensive, and uncertain process of clinical drug development, including uncertain outcomes of clinical trials and potential delays in regulatory approval; our ability to maintain our relationships with our third party vendors; and protection of our proprietary technology, intellectual property portfolio and the confidentiality of our trade secrets. These and other important factors discussed under the caption “Risk Factors” in our most recent Annual Report on Form 10-K and other filings with the
Certain information contained in this press release relates to or is based on studies, publications, surveys and other data obtained from third-party sources and our own internal estimates and research. While we believe these third-party sources to be reliable as of the date of this press release, we have not independently verified, and we make no representation as to the adequacy, fairness, accuracy or completeness of any information obtained from third-party sources.
____________________________
i Leonard MM, Sapone A, Catassi C, et al. Celiac Disease and Nonceliac Gluten Sensitivity: A Review. JAMA 2017;318:647-656 |
ii |
iii Beyond Celiac website (as of |
iv |
v Lionetti E, Gatti S, Pulvirenti A, et al. Celiac disease from a global perspective. Best Pract Res Clin Gastroenterol 2015;29:365-79. |
vi Leonard MM, Sapone A, Catassi C, et al. Celiac Disease and Nonceliac Gluten Sensitivity: A Review. JAMA 2017;318:647-656 |
View source version on businesswire.com: https://www.businesswire.com/news/home/20220404005786/en/
Media Contact:
john.lacey@sqzbiotech.com
781-392-5514
Investor Contact:
michael.kaiser@sqzbiotech.com
857-760-0398
Source:
FAQ
What is the main finding of SQZ Biotechnologies' recent research on TACs?
When does SQZ Biotechnologies plan to submit the IND for celiac disease?
What autoimmune diseases are targeted by SQZ Biotechnologies' TAC platform?
How do TACs work to combat autoimmune diseases?