STOCK TITAN

Rocket Pharmaceuticals Announces Presentations Highlighting Three Lentiviral Gene Therapies at the 63rd American Society of Hematology (ASH) Annual Meeting

Rhea-AI Impact
(Neutral)
Rhea-AI Sentiment
(Neutral)
Tags
Rhea-AI Summary

Rocket Pharmaceuticals (NASDAQ: RCKT) announces upcoming presentations at the 63rd American Society of Hematology Annual Meeting from December 11-14, 2021. The presentations will feature updated clinical data from three gene therapy programs targeting Pyruvate Kinase Deficiency (PKD), Leukocyte Adhesion Deficiency-I (LAD-I), and Fanconi Anemia (FA). Highlights include an oral presentation on the Phase 1 study of RP-L301 for PKD and two poster presentations on RP-L201 for LAD-I and RP-L102 for FA, showcasing interim results and addressing severe unmet medical needs.

Positive
  • Presentation of updated clinical data from three key gene therapy programs at the ASH Annual Meeting.
  • Focus on severe pediatric diseases with high unmet medical needs, indicating potential for market impact.
  • Participation in a recognized medical conference adds visibility and credibility to Rocket's research efforts.
Negative
  • None.

 Updated clinical data to be presented from ongoing Phase 2 registrational trials in LAD-I and FA and Phase 1 trial in PKD—

CRANBURY, N.J.--(BUSINESS WIRE)-- Rocket Pharmaceuticals, Inc. (NASDAQ: RCKT), a clinical-stage company advancing an integrated and sustainable pipeline of genetic therapies for rare childhood disorders, today announces upcoming data presentations at the 63rd American Society of Hematology (ASH) Annual Meeting taking place virtually and in Atlanta, Georgia from December 11-14, 2021.

Presentations will include updated clinical data from three of Rocket’s lentiviral vector (LVV)-based gene therapy programs. The presentations will highlight the Phase 1 global clinical trial of RP-L301 in Pyruvate Kinase Deficiency (PKD) and Phase 2 registrational trials of RP-L201 for Leukocyte Adhesion Deficiency-I (LAD-I) and RP-L102 for Fanconi Anemia (FA).

Details for Rocket’s oral presentation are as follows:

Title: Lentiviral Mediated Gene Therapy for Pyruvate Kinase Deficiency: Interim Results of a Global Phase 1 Study for Adult and Pediatric Patients
Session: 801. Gene Therapy: Basic, Translational and Clinical Studies
Presenter: Ami Shah, MD, Center for Definitive and Curative Medicine, Stanford University School of Medicine, Stanford, CA
Date: Sunday, December 12, 2021
Session Time: 4:30 p.m.6:00 p.m. ET
Presentation Time: 5:30 p.m. ET
Location: Georgia World Congress Center, B207-B208
Publication Number: 563

Details for Rocket’s poster presentations are as follows:

Title: A Phase 1/2 Study of Lentiviral-Mediated Ex-Vivo Gene Therapy for Pediatric Patients with Severe Leukocyte Adhesion Deficiency-I (LAD-I): Interim Results
Session: 801. Gene Therapies: Poster II
Presenter: Elena Almarza, PhD, Senior Scientist, Rocket Pharmaceuticals
Date: Sunday, December 12, 2021
Session Time: 6:00 p.m.8:00 p.m. ET
Location: Georgia World Congress Center, Hall B5
Publication Number: 2932

Title: Gene Therapy for Fanconi Anemia [Group A]: Interim Results of RP-L102 Clinical Trials
Session: 801. Gene Therapies: Poster III
Presenter: Agnieszka Czechowicz, MD, PhD, Center for Definitive and Curative Medicine, Stanford University School of Medicine, Stanford, CA
Date: Monday, December 13, 2021
Session Time: 6:00 p.m.8:00 p.m. ET
Location: Georgia World Congress Center, Hall B5
Publication Number: 3968

Abstracts can be found online at https://www.hematology.org/publications and in the November supplemental issue of Blood.

About Pyruvate Kinase Deficiency

Pyruvate kinase deficiency (PKD) is a rare, monogenic red blood cell disorder resulting from a mutation in the PKLR gene encoding for the pyruvate kinase enzyme, a key component of the red blood cell glycolytic pathway. Mutations in the PKLR gene result in increased red cell destruction and the disorder ranges from mild to life-threatening anemia. PKD has an estimated prevalence of 3,000 to 8,000 patients in the United States and the European Union. Children are the most commonly and severely affected subgroup of patients. Currently available treatments include splenectomy and red blood cell transfusions, which are associated with immune defects and chronic iron overload.

RP-L301 was in-licensed from the Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER) and Instituto de Investigacion Sanitaria Fundacion Jimenez Diaz (IIS-FJD).

About Leukocyte Adhesion Deficiency-I

Severe Leukocyte Adhesion Deficiency-I (LAD-I) is a rare, autosomal recessive pediatric disease caused by mutations in the ITGB2 gene encoding for the beta-2 integrin component CD18. CD18 is a key protein that facilitates leukocyte adhesion and extravasation from blood vessels to combat infections. As a result, children with severe LAD-I are often affected immediately after birth. During infancy, they suffer from recurrent life-threatening bacterial and fungal infections that respond poorly to antibiotics and require frequent hospitalizations. Children who survive infancy experience recurrent severe infections including pneumonia, gingival ulcers, necrotic skin ulcers, and septicemia despite frequent antimicrobial use. Without a successful bone marrow transplant, mortality in patients with severe LAD-I is 60-75% prior to the age of 2 and survival beyond the age of 5 is uncommon. There is a high unmet medical need for patients with severe LAD-I.

About Fanconi Anemia

Fanconi Anemia (FA) is a rare pediatric disease characterized by bone marrow failure, malformations and cancer predisposition. The primary cause of death among patients with FA is bone marrow failure, which typically occurs during the first decade of life. Allogeneic hematopoietic stem cell transplantation (HSCT), when available, corrects the hematologic component of FA, but requires myeloablative conditioning. Graft-versus-host disease, a known complication of allogeneic HSCT, is associated with an increased risk of solid tumors, mainly squamous cell carcinomas of the head and neck region. Approximately 60-70% of patients with FA have a Fanconi Anemia complementation group A (FANCA) gene mutation, which encodes for a protein essential for DNA repair. Mutation in the FANCA gene leads to chromosomal breakage and increased sensitivity to oxidative and environmental stress. Increased sensitivity to DNA-alkylating agents such as mitomycin-C (MMC) or diepoxybutane (DEB) is a ‘gold standard’ test for FA diagnosis. Somatic mosaicism occurs when there is a spontaneous correction of the mutated gene that can lead to stabilization or correction of a FA patient’s blood counts in the absence of any administered therapy. Somatic mosaicism, often referred to as ‘natural gene therapy’ provides a strong rationale for the development of FA gene therapy because of the selective growth advantage of gene-corrected hematopoietic stem cells over FA cells.

About Rocket Pharmaceuticals, Inc.

Rocket Pharmaceuticals, Inc. (NASDAQ: RCKT) is advancing an integrated and sustainable pipeline of genetic therapies that correct the root cause of complex and rare childhood disorders. The Company’s platform-agnostic approach enables it to design the best therapy for each indication, creating potentially transformative options for patients afflicted with rare genetic diseases. Rocket's clinical programs using lentiviral vector (LVV)-based gene therapy are for the treatment of Fanconi Anemia (FA), a difficult to treat genetic disease that leads to bone marrow failure and potentially cancer, Leukocyte Adhesion Deficiency-I (LAD-I), a severe pediatric genetic disorder that causes recurrent and life-threatening infections which are frequently fatal, Pyruvate Kinase Deficiency (PKD), a rare, monogenic red blood cell disorder resulting in increased red cell destruction and mild to life-threatening anemia, and Infantile Malignant Osteopetrosis (IMO), a bone marrow-derived disorder. Rocket’s first clinical program using adeno-associated virus (AAV)-based gene therapy is for Danon disease, a devastating, pediatric heart failure condition. For more information about Rocket, please visit www.rocketpharma.com.

Rocket Cautionary Statement Regarding Forward-Looking Statements

Various statements in this release concerning Rocket’s future expectations, plans and prospects, including without limitation, Rocket’s expectations regarding its guidance for 2021 in light of COVID-19, the safety and effectiveness of product candidates that Rocket is developing to treat Fanconi Anemia (FA), Leukocyte Adhesion Deficiency-I (LAD-I), Pyruvate Kinase Deficiency (PKD), Infantile Malignant Osteopetrosis (IMO) and Danon Disease, the expected timing and data readouts of Rocket’s ongoing and planned clinical trials, Rocket’s plans for the advancement of its Danon Disease program following the lifting of the FDA’s clinical hold and the safety, effectiveness and timing of related pre-clinical studies and clinical trials, may constitute forward-looking statements for the purposes of the safe harbor provisions under the Private Securities Litigation Reform Act of 1995 and other federal securities laws and are subject to substantial risks, uncertainties and assumptions. You should not place reliance on these forward-looking statements, which often include words such as "believe," "expect," "anticipate," "intend," "plan," "will give," "estimate," "seek," "will," "may," "suggest" or similar terms, variations of such terms or the negative of those terms. Although Rocket believes that the expectations reflected in the forward-looking statements are reasonable, Rocket cannot guarantee such outcomes. Actual results may differ materially from those indicated by these forward-looking statements as a result of various important factors, including, without limitation, Rocket’s ability to monitor the impact of COVID-19 on its business operations and take steps to ensure the safety of patients, families and employees, the interest from patients and families for participation in each of Rocket’s ongoing trials, our expectations regarding the delays and impact of COVID-19 on clinical sites, patient enrollment, trial timelines and data readouts, our expectations regarding our drug supply for our ongoing and anticipated trials, actions of regulatory agencies, which may affect the initiation, timing and progress of pre-clinical studies and clinical trials of its product candidates, Rocket’s dependence on third parties for development, manufacture, marketing, sales and distribution of product candidates, the outcome of litigation, and unexpected expenditures, as well as those risks more fully discussed in the section entitled "Risk Factors" in Rocket’s Annual Report on Form 10-K for the year ended December 31, 2020, filed March 1, 2021 with the SEC. Accordingly, you should not place undue reliance on these forward-looking statements. All such statements speak only as of the date made, and Rocket undertakes no obligation to update or revise publicly any forward-looking statements, whether as a result of new information, future events or otherwise.

Media

Kevin Giordano

Director, Corporate Communications

kgiordano@rocketpharma.com

Investors

Mayur Kasetty, M.D.

Director, Business Development & Operations

investors@rocketpharma.com

Source: Rocket Pharmaceuticals, Inc.

FAQ

What upcoming presentations will Rocket Pharmaceuticals have at the ASH Annual Meeting?

Rocket Pharmaceuticals will present updated clinical data on December 12 and 13, 2021, focusing on gene therapies for Pyruvate Kinase Deficiency, Leukocyte Adhesion Deficiency-I, and Fanconi Anemia.

What is the significance of the data being presented by Rocket Pharmaceuticals?

The data highlights advancements in treatments for severe pediatric genetic disorders, addressing significant unmet medical needs.

When is Rocket Pharmaceuticals' oral presentation scheduled at the ASH meeting?

The oral presentation is scheduled for December 12, 2021, from 5:30 p.m. ET.

What are the primary diseases addressed in Rocket Pharmaceuticals' upcoming presentations?

The primary diseases addressed are Pyruvate Kinase Deficiency, Leukocyte Adhesion Deficiency-I, and Fanconi Anemia.

Where will Rocket Pharmaceuticals present their clinical trial data?

Rocket Pharmaceuticals will present at the Georgia World Congress Center during the ASH Annual Meeting.

Rocket Pharmaceuticals, Inc.

NASDAQ:RCKT

RCKT Rankings

RCKT Latest News

RCKT Stock Data

1.23B
91.16M
3.4%
105.1%
12.66%
Biotechnology
Pharmaceutical Preparations
Link
United States of America
NEW YORK