Rocket Pharmaceuticals Announces Presentations Highlighting Lentiviral Gene Therapies at the 29th Annual Congress of the European Society of Gene & Cell Therapy (ESGCT)
Positive Updated Safety and Efficacy Data from Phase 2 Pivotal Trial for Fanconi Anemia (FA)
The poster and presentation include updated safety and efficacy data from the Phase 2 pivotal trial of RP-L102, Rocket’s ex-vivo lentiviral gene therapy candidate for the treatment of FA.
-
At six months post-infusion, at least one additional patient has demonstrated early signs of engraftment, at levels similar to the five of nine evaluable patients who had increased bone marrow cell resistance to mitomycin-C, ranging from
51% to94% at 18-24 months, and sustained ≥20% at consecutive timepoints post RP-L102 infusion. -
With regard to the safety update, one of the patients with confirmed engraftment developed a T-cell lymphoblastic lymphoma that was conclusively determined by the investigator, sponsor and the independent data monitoring committee to be related to FA (a cancer predisposition syndrome) and unrelated to RP-L102 (of note, chemotherapy conditioning is not a part of RP-L102 therapy). The information has been shared with the FDA, with no impact to the clinical trial or filings.
- The patient tolerated induction chemotherapy for lymphoma without significant complications and is currently in complete remission.
- The presence of RP-L102 mediated gene corrected hematopoietic cells may have facilitated the patient’s tolerance of anti-cancer therapy.
- Intensive evaluation of the tumor indicated negligible vector copy number (VCN) of 0.003 at a juncture two-years post-treatment, whereas VCNs in blood and bone marrow were substantial, 0.26 and 0.42, respectively.
- Updated results from the Phase 2 pivotal trial of RP-L102 for FA remain on track for later this quarter and regulatory filings continue to be anticipated in 2023.
Positive Top-line Clinical Data from Phase 2 Pivotal Trial for Severe Leukocyte Adhesion Deficiency-I (LAD-I)
The oral presentation includes previously disclosed efficacy and safety data at three to 24 months of follow-up after RP-L201 infusion for all patients and overall survival data for seven patients at 12 months or longer after infusion. RP-L201 is Rocket’s ex-vivo lentiviral gene therapy candidate for the treatment of severe LAD-I.
-
Observed
100% overall survival at 12 months post-infusion viaKaplan Meier estimate and a statistically significant reduction in all hospitalizations, infection- and inflammatory-related hospitalizations and prolonged hospitalizations for all nine LAD-I patients with three to 24 months of available follow-up. Data also shows evidence of resolution of LAD-I-related skin rash and restoration of wound repair capabilities. - The safety profile of RP-L201 has been highly favorable in all patients with no RP-L201-related serious adverse events to date. Adverse events related to other study procedures, including busulfan conditioning, have been previously disclosed and consistent with the safety profiles of those agents and procedures.
- Based on the positive efficacy and safety data from the Phase 2 pivotal LAD-I trial, Rocket has initiated discussions with the FDA and anticipates regulatory filings in the first half of 2023.
Interim Data from Ongoing Phase 1 Trial for Pyruvate Kinase Deficiency (PKD)
The poster and presentation include previously disclosed safety and efficacy data from the Phase 1 trial of RP-L301, Rocket’s ex-vivo lentiviral gene therapy candidate for the treatment of PKD.
- At 18 months post-infusion, both adult patients have sustained transgene expression, normalized hemoglobin, improved hemolysis, no red blood cell transfusion requirements post-engraftment and improved quality of life both reported anecdotally and as documented via formal quality of life assessments.
- The safety profile of RP-L301 appears favorable, with no IP-related serious adverse events 18 months post-infusion. Transient transaminase elevation was seen in both patients post-therapy/conditioning, with no clinical stigmata of liver injury and subsequent resolution without clinical sequelae.
- Updated preliminary results from the Phase 1 trial of RP-L301 for PKD remain on track for later this quarter. Pediatric patients are currently being enrolled and treated.
Details for Rocket’s Invited Talk and poster presentations are as follows:
Title: Interim Results from an ongoing Phase 1/2 Study of Lentiviral-Mediated Ex-Vivo Gene Therapy for Pediatric Patients with Severe Leukocyte Adhesion Deficiency-I (LAD-I)
Session: Clinical Trials (Plenary 2)
Presenter:
Session date and time: Wednesday, 12 October at
Location:
Presentation Number: INV20
Title: Lentiviral-Mediated Gene Therapy for Patients with Fanconi Anemia [Group A]: Results from Global RP-L102 Clinical Trials
Session: Poster Session 1
Presenter:
Session date and time: Wednesday, 12 October at
Location:
Poster Number: P139
Title: Preliminary Conclusions of the Phase I/II Gene therapy Trial in Patients with Fanconi Anemia-A
Session: Blood Diseases: Haematopoietic Cell Disorders
Presenter:
Session date and time: Thursday, 13 October at
Location:
Presentation Number: INV41
Title: Interim Results from an Ongoing Global Phase 1 Study of Lentiviral-Mediated Gene Therapy for Pyruvate Kinase Deficiency
Session: Poster Session 2
Presenter: José Luis López Lorenzo, MD, Hospital Universitario Fundación Jiménez Díaz
Session date and time: Thursday, 13 October at
Location:
Poster Number: P128
Abstracts for the presentations can be found online at: https://www.esgct.eu/.
About Fanconi Anemia
Fanconi Anemia (FA) is a rare pediatric disease characterized by bone marrow failure, malformations and cancer predisposition. The primary cause of death among patients with FA is bone marrow failure, which typically occurs during the first decade of life. Allogeneic hematopoietic stem cell transplantation (HSCT), when available, corrects the hematologic component of FA, but requires myeloablative conditioning. Graft-versus-host disease, a known complication of allogeneic HSCT, is associated with an increased risk of solid tumors, mainly squamous cell carcinomas of the head and neck region. Approximately 60
About Leukocyte Adhesion Deficiency-I
Severe Leukocyte Adhesion Deficiency-I (LAD-I) is a rare, autosomal recessive pediatric disease caused by mutations in the ITGB2 gene encoding for the beta-2 integrin component CD18. CD18 is a key protein that facilitates leukocyte adhesion and extravasation from blood vessels to combat infections. As a result, children with severe LAD-I are often affected immediately after birth. During infancy, they suffer from recurrent life-threatening bacterial and fungal infections that respond poorly to antibiotics and require frequent hospitalizations. Children who survive infancy experience recurrent severe infections including pneumonia, gingival ulcers, necrotic skin ulcers, and septicemia. Without a successful bone marrow transplant, mortality in patients with severe LAD-I is 60
Rocket’s LAD-I research is made possible by a grant from the
About Pyruvate Kinase Deficiency
Pyruvate kinase deficiency (PKD) is a rare, monogenic red blood cell disorder resulting from a mutation in the PKLR gene encoding for the pyruvate kinase enzyme, a key component of the red blood cell glycolytic pathway. Mutations in the PKLR gene result in increased red cell destruction and the disorder ranges from mild to life-threatening anemia. PKD has an estimated prevalence of 4,000 to 8,000 patients in
RP-L301 was in-licensed from the Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) and Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz (IIS-FJD).
About
Rocket Cautionary Statement Regarding Forward-Looking Statements
Various statements in this release concerning Rocket’s future expectations, plans and prospects, including without limitation, Rocket’s expectations regarding its guidance for 2022 in light of COVID-19, the safety and effectiveness of product candidates that Rocket is developing to treat Fanconi Anemia (FA), Leukocyte Adhesion Deficiency-I (LAD-I), Pyruvate Kinase Deficiency (PKD), and Danon Disease, the expected timing and data readouts of Rocket’s ongoing and planned clinical trials, the expected timing and outcome of Rocket’s regulatory interactions and planned submissions, Rocket’s plans for the advancement of its Danon Disease program and the safety, effectiveness and timing of related pre-clinical studies and clinical trials, may constitute forward-looking statements for the purposes of the safe harbor provisions under the Private Securities Litigation Reform Act of 1995 and other federal securities laws and are subject to substantial risks, uncertainties and assumptions. You should not place reliance on these forward-looking statements, which often include words such as "believe," "expect," "anticipate," "intend," "plan," "will give," "estimate," "seek," "will," "may," "suggest" or similar terms, variations of such terms or the negative of those terms. Although Rocket believes that the expectations reflected in the forward-looking statements are reasonable, Rocket cannot guarantee such outcomes. Actual results may differ materially from those indicated by these forward-looking statements as a result of various important factors, including, without limitation, Rocket’s ability to monitor the impact of COVID-19 on its business operations and take steps to ensure the safety of patients, families and employees, the interest from patients and families for participation in each of Rocket’s ongoing trials, our expectations regarding the delays and impact of COVID-19 on clinical sites, patient enrollment, trial timelines and data readouts, our expectations regarding our drug supply for our ongoing and anticipated trials, actions of regulatory agencies, which may affect the initiation, timing and progress of pre-clinical studies and clinical trials of its product candidates, Rocket’s dependence on third parties for development, manufacture, marketing, sales and distribution of product candidates, the outcome of litigation, and unexpected expenditures, as well as those risks more fully discussed in the section entitled "Risk Factors" in Rocket’s Annual Report on Form 10-K for the year ended
View source version on businesswire.com: https://www.businesswire.com/news/home/20221012005478/en/
Media
Director, Corporate Communications
kgiordano@rocketpharma.com
Investors
Vice President, Investor Relations and Corporate Finance
investors@rocketpharma.com
Source: