Predictive Oncology Successfully Develops Predictive Models Derived from Never-Before-Seen Compounds for Prevalent Cancer Indications Including Breast, Colon and Ovary
Predictive Oncology (NASDAQ: POAI) has successfully developed predictive models from 21 unique compounds sourced from the Natural Products Discovery Core (NPDC) at the University of Michigan Life Sciences Institute. The company's AI-driven platform evaluated these compounds for tumor response across breast, colon, and ovary cancer types.
Key findings include:
- Three compounds showed stronger tumor response than the benchmark drug Doxorubicin across all tested tumor types
- A fourth compound demonstrated strong response in ovary and colon models
- Three additional compounds showed significant 'hit responses' across all tumor types
- The ML model achieved 73% prediction coverage while only requiring 7% of possible wet lab experiments, potentially saving up to two years of laboratory testing
The NPDC library, one of the largest pharmaceutically viable natural products collections in the United States, contains specimens from global biodiverse hotspots. Natural products have historically contributed to at least half of approved small-molecule drugs in the past three decades.
Predictive Oncology (NASDAQ: POAI) ha sviluppato con successo modelli predittivi a partire da 21 composti unici provenienti dal Natural Products Discovery Core (NPDC) presso l'Istituto delle Scienze della Vita dell'Università del Michigan. La piattaforma guidata dall'AI dell'azienda ha valutato questi composti per la risposta tumorale nei tipi di cancro al seno, al colon e all'ovaio.
I risultati chiave includono:
- Tre composti hanno mostrato una risposta tumorale più forte rispetto al farmaco di riferimento Doxorubicina in tutti i tipi di tumore testati
- Un quarto composto ha dimostrato una forte risposta nei modelli di ovaio e colon
- Altri tre composti hanno mostrato significative 'risposte positive' in tutti i tipi di tumore
- Il modello di ML ha raggiunto una copertura predittiva del 73% richiedendo solo il 7% degli esperimenti di laboratorio umido possibili, potenzialmente risparmiando fino a due anni di test di laboratorio
La biblioteca NPDC, una delle più grandi collezioni di prodotti naturali farmacologicamente validi negli Stati Uniti, contiene campioni provenienti da hotspot di biodiversità globali. I prodotti naturali hanno storicamente contribuito ad almeno la metà dei farmaci approvati a base di piccole molecole negli ultimi tre decenni.
Predictive Oncology (NASDAQ: POAI) ha desarrollado con éxito modelos predictivos a partir de 21 compuestos únicos obtenidos del Natural Products Discovery Core (NPDC) en el Instituto de Ciencias de la Vida de la Universidad de Michigan. La plataforma impulsada por IA de la empresa evaluó estos compuestos para la respuesta tumoral en tipos de cáncer de mama, colon y ovario.
Los hallazgos clave incluyen:
- Tres compuestos mostraron una respuesta tumoral más fuerte que el medicamento de referencia Doxorubicina en todos los tipos de tumores probados
- Un cuarto compuesto demostró una fuerte respuesta en modelos de ovario y colon
- Otros tres compuestos mostraron 'respuestas positivas' significativas en todos los tipos de tumores
- El modelo de ML logró una cobertura de predicción del 73% mientras que solo requirió el 7% de los posibles experimentos de laboratorio húmedo, lo que podría ahorrar hasta dos años de pruebas de laboratorio
La biblioteca NPDC, una de las colecciones de productos naturales farmacéuticamente viables más grandes de los Estados Unidos, contiene ejemplares de puntos críticos de biodiversidad global. Los productos naturales han contribuido históricamente a al menos la mitad de los medicamentos aprobados a base de pequeñas moléculas en las últimas tres décadas.
Predictive Oncology (NASDAQ: POAI)는 미시간 대학교 생명 과학 연구소의 자연 제품 발견 코어(NPDC)에서 수집한 21개의 독특한 화합물로부터 예측 모델을 성공적으로 개발했습니다. 이 회사의 AI 기반 플랫폼은 유방암, 대장암 및 난소암 유형에 대한 종양 반응을 평가했습니다.
주요 발견 사항은 다음과 같습니다:
- 세 가지 화합물이 테스트된 모든 종양 유형에서 기준 약물인 독소루비신보다 더 강한 종양 반응을 보였습니다.
- 네 번째 화합물은 난소 및 대장 모델에서 강한 반응을 나타냈습니다.
- 세 가지 추가 화합물이 모든 종양 유형에서 유의미한 '히트 반응'을 보였습니다.
- ML 모델은 73%의 예측 범위를 달성했으며, 가능한 습식 실험의 7%만 필요로 하여 실험실 테스트에서 최대 2년을 절약할 수 있습니다.
NPDC 라이브러리는 미국에서 가장 큰 제약적으로 유효한 자연 제품 컬렉션 중 하나로, 전 세계의 생물 다양성 핫스팟에서 수집된 샘플을 포함하고 있습니다. 자연 제품은 지난 30년 동안 승인된 소분자 약물의 절반 이상에 기여해 왔습니다.
Predictive Oncology (NASDAQ: POAI) a développé avec succès des modèles prédictifs à partir de 21 composés uniques issus du Natural Products Discovery Core (NPDC) de l'Institut des Sciences de la Vie de l'Université du Michigan. La plateforme alimentée par l'IA de l'entreprise a évalué ces composés pour leur réponse tumorale dans les types de cancer du sein, du côlon et de l'ovaire.
Les principales conclusions incluent :
- Trois composés ont montré une réponse tumorale plus forte que le médicament de référence Doxorubicine dans tous les types de tumeurs testés
- Un quatrième composé a démontré une forte réponse dans les modèles d'ovaire et de côlon
- Trois composés supplémentaires ont montré des 'réponses positives' significatives dans tous les types de tumeurs
- Le modèle de ML a atteint une couverture prédictive de 73 % tout en ne nécessitant que 7 % des expériences de laboratoire humide possibles, ce qui pourrait potentiellement faire gagner jusqu'à deux ans de tests en laboratoire
La bibliothèque NPDC, l'une des plus grandes collections de produits naturels pharmaceutiquement viables aux États-Unis, contient des échantillons provenant de points chauds de biodiversité mondiaux. Les produits naturels ont historiquement contribué à au moins la moitié des médicaments approuvés à base de petites molécules au cours des trois dernières décennies.
Predictive Oncology (NASDAQ: POAI) hat erfolgreich prädiktive Modelle aus 21 einzigartigen Verbindungen entwickelt, die aus dem Natural Products Discovery Core (NPDC) am Life Sciences Institute der University of Michigan stammen. Die KI-gesteuerte Plattform des Unternehmens bewertete diese Verbindungen hinsichtlich der Tumorreaktion bei Brust-, Dickdarm- und Eierstockkrebs.
Wichtige Ergebnisse umfassen:
- Drei Verbindungen zeigten eine stärkere Tumorreaktion als das Vergleichsmedikament Doxorubicin bei allen getesteten Tumortypen
- Eine vierte Verbindung zeigte eine starke Reaktion in Eierstock- und Dickdarmmodellen
- Drei weitere Verbindungen zeigten signifikante 'Trefferantworten' bei allen Tumortypen
- Das ML-Modell erreichte eine Vorhersageabdeckung von 73%, während es nur 7% der möglichen Laborexperimente benötigte, was potenziell bis zu zwei Jahre Laboruntersuchungen einsparen könnte
Die NPDC-Bibliothek, eine der größten pharmakologisch nutzbaren Sammlungen natürlicher Produkte in den Vereinigten Staaten, enthält Proben aus globalen Biodiversitäts-Hotspots. Natürliche Produkte haben in den letzten drei Jahrzehnten historisch gesehen zu mindestens der Hälfte der zugelassenen kleinmolekularen Arzneimittel beigetragen.
- Three compounds outperformed benchmark drug Doxorubicin across all tumor types
- ML platform achieved 73% prediction accuracy while reducing lab testing by 93%
- Potential to save up to two years in laboratory testing time
- Successfully tested compounds against multiple cancer types (breast, colon, ovary)
- Partnership with major research institution (University of Michigan) provides access to extensive compound library
- Only 1% of available NPDC library tested so far
- Results still require further investigation and validation
- Additional testing and development needed before commercialization
Insights
Predictive Oncology's announcement represents a significant technological validation of their AI-driven drug discovery platform. By successfully developing predictive models for 21 compounds from the University of Michigan's Natural Products Discovery Core against breast, colon, and ovary cancer samples, they've demonstrated their platform's ability to accelerate the drug candidate selection process.
The efficiency metrics are particularly impressive: their machine learning platform made confident predictions covering 73% of experiments after measuring only 7% of possible wet lab tests, potentially eliminating up to two years of laboratory testing. In drug discovery, where time equates to substantial costs, this represents meaningful acceleration of the traditional discovery process.
Three compounds demonstrated tumor response stronger than Doxorubicin (a standard chemotherapy benchmark) across all tested tumor types, with additional compounds showing promising activity in specific cancer types. This suggests their AI platform is effectively identifying promising candidates from natural products, which historically account for approximately half of approved small-molecule drugs.
While these findings represent very early-stage discovery work that would require years of development before potential commercialization, the real value here is the platform validation. By successfully identifying promising compounds from just 1% of the available NPDC library, POAI demonstrates capability that could attract additional partnerships beyond this collaboration. The announced intention for future collaborations with the NPDC suggests an ongoing relationship that could yield additional candidates from their extensive natural products library.
This announcement highlights how Predictive Oncology is addressing two fundamental challenges in drug development: reducing screening time and improving candidate selection efficiency. Their AI platform's ability to predict 73% of experimental outcomes after conducting only 7% of wet lab tests represents a significant acceleration of the traditional hit-to-lead process.
The identification of three compounds outperforming Doxorubicin across multiple tumor types is noteworthy, as beating established therapies in initial screening represents a promising starting point. Natural products offer unique structural diversity that synthetic libraries often lack, making them valuable sources for novel mechanisms of action against cancer.
From a development perspective, it's important to recognize these are extremely early findings. These compounds would still require extensive optimization, ADME studies, toxicity screening, and preclinical validation before any potential clinical testing. However, the partnership with Michigan's Natural Products Discovery Core provides access to a pharmaceutically relevant library with global biodiversity representation, increasing the probability of identifying candidates with novel pharmacophores.
The efficiency demonstrated here - eliminating potentially years of laboratory testing - could significantly impact the economics of early drug discovery by allowing research organizations to allocate resources more effectively. Rather than testing every compound against every cancer type, this predictive approach prioritizes the most promising experiments, potentially increasing the overall productivity of discovery efforts. This collaboration model, leveraging academic natural product resources with commercial AI capabilities, represents an increasingly viable pathway for identifying new oncology leads in a field where innovation often comes from unexplored chemical space.
Company successfully developed predictive models derived from 21 unique compounds from the Natural Products Discovery Core at the University of Michigan
Tumor response models for novel compounds represent true drug discovery using Predictive's active machine learning platform
PITTSBURGH, March 25, 2025 (GLOBE NEWSWIRE) -- Predictive Oncology Inc. (NASDAQ: POAI), a leader in AI-driven drug discovery, announced today that it has successfully developed predictive models derived from 21 unique compounds from the Natural Products Discovery Core (NPDC) at the University of Michigan Life Sciences Institute.
Predictive Oncology, in partnership with the NPDC, recently evaluated 21 novel compounds using Predictive’s active machine learning platform. The platform is used to shorten the time necessary to select drug candidates, while increasing the probability of technical success using live-cell tumor samples from its extensive biobank of frozen specimens.
The U-M Natural Products Discovery Core is home to a best-in-class library, and among one of the largest pharmaceutically viable natural products libraries in the United States, with specimens collected from biodiverse hotspots around the globe including Asia-Pacific, the Middle East, South America, North America and the Antarctic.
Natural products are specialized molecules with diverse biological activities. At least half of the small-molecule drugs approved during the past three decades were derived from these products, underscoring their importance in drug discovery and the potential to patent and market these assets.
“Three compounds consistently demonstrated strong tumor drug response across all tumor types tested and demonstrated a stronger response than Doxorubicin, a benchmark compound, across tumor types,” said Dr. Arlette Uihlein, SVP of Translational Medicine and Drug Discovery at Predictive Oncology. “A fourth drug showed a strong response in the ovary and colon models and three additional compounds demonstrated the most ‘hit responses’ across all three tumor types.”
“The efforts of this program and Predictive Oncology’s platform along with these novel compounds is tangibly driving and supporting true drug discovery,” Dr. Uihlein concluded.
Three tumor types — breast, colon and ovary — were selected for testing with 21 NPDC compounds and a benchmark known anti-cancer drug. After only measuring
“Demonstrating that these natural compounds have such strong anti-tumor activity against several human tumor types strongly supports further investigations into these compounds and additional compounds, especially when considering that these results were achieved by including only about
About Predictive Oncology
Predictive Oncology is on the cutting edge of the rapidly growing use of artificial intelligence and machine learning to expedite early drug discovery and enable drug development for the benefit of cancer patients worldwide. The company’s scientifically validated AI platform, PEDAL, is able to predict with
Investor Relations Contact:
Michael Moyer
LifeSci Advisors, LLC
mmoyer@lifesciadvisors.com
Forward-Looking Statements:
Certain matters discussed in this release contain forward-looking statements. These forward- looking statements reflect our current expectations and projections about future events and are subject to substantial risks, uncertainties and assumptions about our operations and the investments we make. All statements, other than statements of historical facts, included in this press release regarding our strategy, future operations, future financial position, future revenue and financial performance, projected costs, prospects, changes in management, plans and objectives of management are forward-looking statements. The words “anticipate,” “believe,” “estimate,” “expect,” “intend,” “may,” “plan,” “would,” “target” and similar expressions are intended to identify forward-looking statements, although not all forward-looking statements contain these identifying words. Our actual future performance may materially differ from that contemplated by the forward-looking statements as a result of a variety of factors including, among other things, factors discussed under the heading “Risk Factors” in our filings with the SEC. Except as expressly required by law, the company disclaims any intent or obligation to update these forward-looking statements.
