Nurix Therapeutics Presents Data at the AACR 2025 Annual Meeting Highlighting the Transformative Potential of Its Proprietary DEL-AI Platform Leveraging Machine Learning to Speed the Discovery of Novel Drugs
Nurix Therapeutics unveiled groundbreaking data at the AACR 2025 Annual Meeting showcasing their innovative DEL-AI platform, which combines DNA-encoded libraries with machine learning to accelerate drug discovery.
The company's DEL Foundation Model, developed in collaboration with Loka and supported by Amazon Web Services, demonstrates remarkable capabilities in:
- Accurately predicting novel drug binders for therapeutic targets
- Working with as little as 50% amino acid sequence similarity
- Identifying potential treatments for previously "undruggable" targets
- Inferring binders from chemical space outside training data
This AI-powered platform represents a significant advancement in drug discovery, potentially streamlining the identification of small molecule drugs, protein degraders, and molecular glues. The technology leverages Nurix's extensive database of over five billion unique DEL compounds screened against hundreds of disease targets and E3 ligase proteins.
The presentation, titled "DEL-AI: Proteome-wide in silico screening of multi-billion compound libraries using machine learning foundation models," validates the platform's ability to perform virtual DEL experiments and accurately predict experimental results.
Nurix Therapeutics ha presentato dati rivoluzionari al AACR 2025 Annual Meeting, mostrando la loro innovativa piattaforma DEL-AI che combina librerie codificate con DNA e apprendimento automatico per accelerare la scoperta di farmaci.
Il DEL Foundation Model dell'azienda, sviluppato in collaborazione con Loka e supportato da Amazon Web Services, dimostra capacità straordinarie nel:
- Prevedere con precisione nuovi leganti farmacologici per bersagli terapeutici
- Operare anche con solo il 50% di somiglianza nella sequenza degli amminoacidi
- Individuare potenziali trattamenti per bersagli precedentemente considerati "non farmacologici"
- Inferire leganti da spazi chimici esterni ai dati di addestramento
Questa piattaforma potenziata dall'IA rappresenta un importante progresso nella scoperta di farmaci, potenzialmente semplificando l'identificazione di piccole molecole, degradatori proteici e colle moleculari. La tecnologia sfrutta l'ampio database di Nurix, contenente oltre cinque miliardi di composti DEL unici testati contro centinaia di bersagli patologici e proteine E3 ligasi.
La presentazione, intitolata "DEL-AI: screening in silico a livello proteomico di librerie con miliardi di composti utilizzando modelli fondazionali di machine learning," conferma la capacità della piattaforma di eseguire esperimenti virtuali DEL e di prevedere con accuratezza i risultati sperimentali.
Nurix Therapeutics presentó datos innovadores en la Reunión Anual AACR 2025, mostrando su plataforma DEL-AI que combina bibliotecas codificadas con ADN y aprendizaje automático para acelerar el descubrimiento de fármacos.
El Modelo Fundacional DEL de la compañía, desarrollado en colaboración con Loka y apoyado por Amazon Web Services, demuestra habilidades notables para:
- Predecir con precisión nuevos ligandos para objetivos terapéuticos
- Trabajar con solo un 50% de similitud en la secuencia de aminoácidos
- Identificar tratamientos potenciales para objetivos previamente considerados "no abordables"
- Inferir ligandos desde el espacio químico fuera de los datos de entrenamiento
Esta plataforma impulsada por IA representa un avance significativo en el descubrimiento de fármacos, facilitando la identificación de pequeñas moléculas, degradadores de proteínas y pegamentos moleculares. La tecnología aprovecha la extensa base de datos de Nurix, con más de cinco mil millones de compuestos DEL únicos evaluados contra cientos de objetivos patológicos y proteínas E3 ligasas.
La presentación, titulada "DEL-AI: cribado in silico a nivel proteómico de bibliotecas con miles de millones de compuestos usando modelos fundacionales de aprendizaje automático," valida la capacidad de la plataforma para realizar experimentos virtuales DEL y predecir con precisión los resultados experimentales.
Nurix Therapeutics가 AACR 2025 연례 회의에서 혁신적인 DEL-AI 플랫폼을 공개했습니다. 이 플랫폼은 DNA 인코딩 라이브러리와 머신러닝을 결합하여 신약 개발을 가속화합니다.
회사와 Loka가 협력하고 Amazon Web Services가 지원하는 DEL Foundation Model은 다음과 같은 뛰어난 능력을 보여줍니다:
- 치료 표적에 대한 새로운 약물 결합체를 정확히 예측
- 아미노산 서열 유사도가 50%에 불과해도 작동
- 이전에는 "약물화 불가능"으로 여겨졌던 표적에 대한 잠재적 치료제 식별
- 훈련 데이터 외부의 화학 공간에서 결합체 추론
이 AI 기반 플랫폼은 신약 발견에 있어 중요한 진전을 나타내며, 소분자 약물, 단백질 분해제, 분자 접착제의 식별을 효율화할 수 있습니다. 이 기술은 수십억 개의 고유 DEL 화합물과 수백 개의 질병 표적 및 E3 리가아제 단백질에 대한 Nurix의 방대한 데이터베이스를 활용합니다.
"DEL-AI: 머신러닝 기초 모델을 이용한 수십억 개 화합물 라이브러리의 전 프로테옴 인 실리코 스크리닝"이라는 제목의 발표는 플랫폼이 가상 DEL 실험을 수행하고 실험 결과를 정확히 예측할 수 있음을 입증합니다.
Nurix Therapeutics a dévoilé des données révolutionnaires lors du Congrès annuel AACR 2025, présentant leur plateforme innovante DEL-AI qui combine des bibliothèques codées par ADN et l'apprentissage automatique pour accélérer la découverte de médicaments.
Le DEL Foundation Model de l'entreprise, développé en collaboration avec Loka et soutenu par Amazon Web Services, montre des capacités remarquables dans :
- La prédiction précise de nouveaux ligands pour des cibles thérapeutiques
- Le fonctionnement avec seulement 50 % de similarité dans la séquence d'acides aminés
- L'identification de traitements potentiels pour des cibles auparavant considérées comme "non abordables"
- L'inférence de ligands à partir d'espaces chimiques en dehors des données d'entraînement
Cette plateforme propulsée par l'IA représente une avancée majeure dans la découverte de médicaments, facilitant potentiellement l'identification de petites molécules, de dégradeurs de protéines et de colles moléculaires. La technologie exploite la vaste base de données de Nurix, comprenant plus de cinq milliards de composés DEL uniques testés contre des centaines de cibles pathologiques et des protéines E3 ligases.
La présentation, intitulée "DEL-AI : criblage in silico à l'échelle du protéome de bibliothèques de plusieurs milliards de composés utilisant des modèles fondamentaux d'apprentissage automatique," valide la capacité de la plateforme à réaliser des expériences DEL virtuelles et à prédire avec précision les résultats expérimentaux.
Nurix Therapeutics präsentierte auf dem AACR 2025 Annual Meeting bahnbrechende Daten zu ihrer innovativen DEL-AI-Plattform, die DNA-codierte Bibliotheken mit maschinellem Lernen kombiniert, um die Wirkstoffentdeckung zu beschleunigen.
Das DEL Foundation Model des Unternehmens, entwickelt in Zusammenarbeit mit Loka und unterstützt von Amazon Web Services, zeigt bemerkenswerte Fähigkeiten bei:
- Der genauen Vorhersage neuartiger Wirkstoffbinder für therapeutische Ziele
- Der Arbeit mit nur 50 % Aminosäuresequenzähnlichkeit
- Der Identifizierung potenzieller Behandlungen für zuvor als "nicht ansprechbar" geltende Ziele
- Dem Ableiten von Bindern aus chemischem Raum außerhalb der Trainingsdaten
Diese KI-gestützte Plattform stellt einen bedeutenden Fortschritt in der Wirkstoffforschung dar und könnte die Identifikation von Kleinmolekülmedikamenten, Protein-Degradatoren und molekularen Klebstoffen vereinfachen. Die Technologie nutzt die umfangreiche Datenbank von Nurix mit über fünf Milliarden einzigartigen DEL-Verbindungen, die gegen hunderte Krankheitsziele und E3-Ligasen getestet wurden.
Die Präsentation mit dem Titel "DEL-AI: Proteomweite in silico-Screening von Multi-Milliarden-Verbindungssammlungen mittels maschineller Lern-Grundlagenmodelle" bestätigt die Fähigkeit der Plattform, virtuelle DEL-Experimente durchzuführen und experimentelle Ergebnisse präzise vorherzusagen.
- Development of first-in-class DEL Foundation Model capable of predicting novel drug binders, potentially accelerating drug discovery process
- Model requires only 50% amino acid sequence similarity to predict binders, expanding potential drug target range
- Platform can identify binders for previously 'undruggable' targets, opening new therapeutic possibilities
- Model demonstrates ability to predict binders from chemical space outside training data, showing versatility
- Strategic collaboration with Loka and AWS provides enterprise-grade infrastructure for the platform
- Platform is still in early development stage with no proven commercial success yet
- Technology requires significant computational resources and infrastructure investment
- No specific metrics provided on time or cost savings compared to traditional drug discovery methods
Insights
Nurix's AI-powered drug discovery platform shows potential to unlock previously undruggable targets, significantly accelerating their pharmaceutical development capabilities.
Nurix Therapeutics' presentation at AACR 2025 represents a significant technological advancement in their drug discovery platform. Their DEL-AI foundation model leverages machine learning trained on Nurix's proprietary DNA-encoded library data to predict novel small molecule binders for therapeutically relevant proteins. The most compelling aspect is the platform's demonstrated ability to identify chemical matter for targets previously considered undruggable – one of the pharmaceutical industry's most persistent challenges.
The technical data presented shows that the model requires as little as 50% amino acid sequence similarity to training data to make accurate predictions, suggesting broad applicability across diverse protein targets. Furthermore, the model demonstrated capability to infer binders from chemical space not represented in the training set, indicating sophisticated generalization abilities beyond its training parameters.
For a clinical-stage company focused on protein degradation, this computational platform could substantially accelerate discovery workflows for both internal programs and partnership opportunities. By enabling rapid in silico screening of billions of compounds, Nurix can potentially identify novel starting points for drug discovery more efficiently than traditional methods, addressing a key bottleneck in the development of protein degraders, molecular glues, and inhibitors.
The DEL Foundation Model described by Nurix represents a paradigm shift in applying AI to drug discovery. While many companies deploy machine learning in pharmaceutical R&D, Nurix's approach is distinctive in how it integrates massive DNA-encoded library screening data with protein sequence information to create a generalizable structure-activity relationship model.
From a technical perspective, what's remarkable is the model's demonstrated ability to perform virtual DEL experiments that accurately predict experimental outcomes. The correlation between virtually predicted and experimentally-derived results validates the approach's fundamental soundness. More impressive is the platform's capability to make meaningful predictions with only partial sequence similarity (50%) to training data, suggesting robust feature extraction and application.
The collaboration architecture combining Nurix's proprietary data with Loka's software development expertise and AWS's scalable infrastructure exemplifies how specialized domain knowledge (DEL screening) can be effectively paired with cutting-edge AI infrastructure. This collaborative approach leveraging AWS SageMaker and MLflow provides the enterprise-grade reliability needed for deployable AI in pharmaceutical research.
For Nurix, this capability effectively expands their addressable target space beyond what's physically screened in their libraries, potentially uncovering novel therapeutic opportunities that would remain hidden using conventional approaches.
Nurix’s DEL-AI platform uses a first-in-class DEL Foundation Model trained on the Company’s proprietary DNA encoded library data
Nurix’s DEL Foundation Model can accurately predict novel binders to therapeutically relevant targets, including many targets considered undruggable, with the potential to accelerate the discovery of novel drugs
SAN FRANCISCO, April 28, 2025 (GLOBE NEWSWIRE) -- Nurix Therapeutics, Inc. (Nasdaq: NRIX), a clinical-stage biopharmaceutical company focused on the discovery, development and commercialization of targeted protein degradation medicines, today presented data that demonstrate the potential of its DEL Foundation Model to enable the rapid in silico identification of novel binders for a broad range of therapeutically relevant proteins, addressing a key barrier in the discovery and development of small molecule drugs. These results were presented at the American Association of Cancer Research (AACR) Annual Meeting in Chicago, IL, which is being held from April 25-30, 2025.
“Nurix’s DEL-AI platform has the potential to accelerate the discovery of breakthrough small molecule drugs—whether they be protein degraders, molecular glues, or inhibitors—by enabling ready-access to tractable chemical matter for an expansive set of proteins, especially those previously considered beyond the reach of drug discovery organizations,” said Gwenn M. Hansen, Ph.D., chief scientific officer of Nurix. “Our team has leveraged the rich datasets generated from rigorously controlled screenings of our customize collection of over five billion unique DEL compounds against hundreds of disease targets and E3 ligase proteins to construct a powerful suite of machine learning models and tools. By directly integrating the sampling density provided by DEL compound repertoires with primary protein sequence information, our model can learn a generalizable structure activity relationship capable of predicting novel binders for nearly any disease-relevant protein target.”
“Our DEL-AI engine is a potential game changer, allowing us to substantially accelerate drug discovery workflows and efficiently identify therapeutic candidates for our wholly owned pipeline and our current and future discovery partnerships,” said Arthur T. Sands, M.D., Ph.D., president and chief executive officer of Nurix. “This powerful research engine is a result of our significant expertise and strategic investments in DEL methodology and our machine learning platform.”
Nurix’s presentation at the AACR 2025 Annual Meeting, titled: “DEL-AI: Proteome-wide in silico screening of multi-billion compound libraries using machine learning foundation models,” described the development of a first-in-class foundation model that was trained on the Company’s high quality, proprietary DEL data. Nurix’s DEL Foundation Model is able to perform virtual DEL experiments on prospective protein target sequences to accurately predict novel binders to a large proportion of therapeutically relevant targets, including many targets considered undruggable. In plots of virtually predicted vs. experimentally-derived DEL screens against therapeutically relevant proteins, Nurix’s DEL Foundation Model demonstrated the ability to accurately predict the experimental results, including experimentally validated binders. Success of the DEL Foundation Model was found to correlate to the degree of similarity of query sequences to proteins within the DEL training set, and data demonstrated that the current model requires as little as
The development of the DEL Foundation Model was led by Nurix in collaboration with Loka, a Silicon Valley-based software development firm, and supported by Amazon Web Services (AWS), leveraging AWS SageMaker and AWS managed MLflow to provide enterprise-grade reliability and scalable infrastructure.
About DEL-AI
DEL-AI is Nurix’s discovery platform which employs advanced machine learning to enable all aspects of Nurix’s discovery engine, starting with DNA encoded library (DEL) hit-finding and degrader design, followed by automated chemistry synthesis and direct-to-biology screening and optimization, to rapidly generate degraders and degrader antibody conjugates (DACs) as new chemical entity drug candidates. By leveraging hundreds of billions of DEL compound binding signatures derived from thousands of DEL affinity screens collected from a diverse set of highly validated protein targets, Nurix’s DEL-AI platform can prospectively identify binders as starting points for drug discovery for virtually any pharmaceutically relevant target.
About Nurix Therapeutics, Inc.
Nurix Therapeutics is a clinical stage biopharmaceutical company focused on the discovery, development and commercialization of targeted protein degradation medicines, the next frontier in innovative drug design aimed at improving treatment options for patients with cancer and inflammatory diseases. Nurix’s wholly owned, clinical stage pipeline includes degraders of Bruton’s tyrosine kinase (BTK), a B-cell signaling protein, and inhibitors of Casitas B-lineage lymphoma proto-oncogene B (CBL-B), an E3 ligase that regulates activation of multiple immune cell types including T cells and NK cells. Nurix also is advancing multiple potentially first-in-class or best-in-class degraders and degrader antibody conjugates (DACs) in its preclinical pipeline. Nurix’s partnered drug discovery pipeline consists of preclinical stage degraders of IRAK4 and STAT6, as well as multiple additional programs under collaboration agreements with Gilead Sciences, Inc., Sanofi S.A. and Pfizer Inc., within which Nurix retains certain options for co-development, co-commercialization and profit sharing in the United States for multiple drug candidates. Powered by a fully AI-integrated discovery engine capable of tackling any protein class, and coupled with unparalleled ligase expertise, Nurix’s dedicated team has built a formidable advantage in translating the science of targeted protein degradation into clinical advancements. Nurix aims to establish degrader-based treatments at the forefront of patient care, writing medicine’s next chapter with a new script to outmatch disease. Nurix is headquartered in San Francisco, California. For additional information visit http://www.nurixtx.com.
Forward-Looking Statements
This press release contains forward-looking statements within the meaning of the U.S. Private Securities Litigation Reform Act of 1995 and other federal securities laws. Any statements contained herein that do not describe historical facts, including, but not limited to, statements regarding the potential advantages of Nurix’s DEL-AI platform and the potential benefits of Nurix’s DEL Foundation Model, including its potential to accelerate the discovery of novel drugs, are forward-looking statements that involve risks and uncertainties that could cause actual results to differ materially from those discussed in such forward-looking statements. Such risks and uncertainties include, among others, the risks described under the heading “Risk Factors” in Nurix’s Quarterly Report on Form 10-Q for the fiscal period ended February 28, 2025, and subsequent filings with the SEC. Any of these risks and uncertainties could materially and adversely affect Nurix’s business and results of operations, which could, in turn, have a significant and adverse impact on Nurix’s stock price. Nurix cautions you not to place undue reliance on any forward-looking statements, which speak only as of the date they are made. Nurix undertakes no obligation to update publicly any forward-looking statements to reflect new information, events or circumstances after the date they were made or to reflect the occurrence of unanticipated events.
Contacts:
Investors
Jason Kantor, Ph.D.
Nurix Therapeutics, Inc.
ir@nurixtx.com
Elizabeth Wolffe, Ph.D.
Wheelhouse Life Science Advisors
lwolffe@wheelhouselsa.com
Media
Aljanae Reynolds
Wheelhouse Life Science Advisors
areynolds@wheelhouselsa.com
