STOCK TITAN

Trinamic's Open-Source Reference Design Shrinks and Speeds Development of End-of-Arm Tooling

Rhea-AI Impact
(Neutral)
Rhea-AI Sentiment
(Neutral)
Tags
Rhea-AI Summary

Maxim Integrated Products has unveiled the TMCM-1617-GRIP-REF reference design, an open-source solution aimed at enhancing industrial robotic end-of-arm tooling (EoAT). This integrated design reduces development time by 50% and shrinks electronic gripper size by three times. The reference design features the MAX22000 and MAX14906 components, supporting flexible communication protocols such as EtherCAT and IO-Link. Priced at $571.10, it aids engineers in delivering efficient EoAT solutions, promoting productivity and real-time adjustments.

Positive
  • Develops more compact EoAT solutions, reducing size by three times.
  • Halves development time for industrial automation applications.
  • Features advanced components such as MAX22000 and MAX14906, enhancing functionality.
Negative
  • None.

HAMBURG, Germany, May 26, 2021 /PRNewswire/ -- TRINAMIC Motion Control GmbH & Co. KG, now part of Maxim Integrated Products, Inc. (NASDAQ: MXIM), introduces an open-source, fully integrated reference design that simplifies the development of industrial robotic end-of-arm tooling (EoAT). The TMCM-1617-GRIP-REF reference design integrates hardware-based field-oriented control (FOC) and three communication ports to shrink the design size of electronic robotic grippers by three times, while reducing development time by half. The reference design features Maxim Integrated's industrial-grade MAX22000 high-precision configurable analog input/output and MAX14906 quad-channel digital input/output to adjust the multiple modes of the Trinamic TMCM-1617 single axis servo driver.

Designed to fit within the standard form-factor used for EoAT grippers, the TMCM-1617-GRIP-REF reference design supports industrial EtherCAT, IO-Link or RS-485 communication, provides software-programmable analog and digital input/outputs, and can be configured using the Trinamic Motion Control Language Integrated Development Environment (TMCL-IDE).  This combination of reference design and software platform provides a simple way for design engineers to rapidly deliver a complete EoAT solution.

Key Advantages

  • Speed Time to Market: The open-source EoAT gripper reference design is a fully integrated, intelligent hardware platform that provides motor control algorithms as well as protocol stacks to reduce end of arm tooling development time in half.
  • Reduce Size: The reference design integrates hardware-based FOC, software configurable input/outputs, and three communication protocol stacks into a compact solution size that measures 4,197 mm2.
  • Increase Productivity: Real-time adjustment of the various TMCM-1617 servo drive modes, including gripper position and gripping force, boost flexibility for higher factory throughput.

Commentaries

"There's a need for industrial automation engineers to rely on a toolkit that simplifies the development and commissioning of robotic EoAT solutions," explains Jeff DeAngelis, Vice President of Industrial Communications at Maxim. "The TMCM-1617-GRIP-REF reference design simplifies the tooling development process, allowing automation engineers to focus their time on developing advanced, real-time EoAT solutions that embody the true meaning of delivering intelligence at the edge."

"The TMCM-1617-GRIP-REF reference design eliminates the burden of implementing motor control algorithms, as well as protocol stacks for end-of-arm tooling," said Jonas Proeger, Director of Business Management at Trinamic. "With state-of-the-art bus options, control algorithms, and diagnostics provided in a single solution, the reference design boosts productivity on the factory floor and drives intelligence to the edge."

Availability and Pricing

The TMCM-1617-GRIP-REF reference design is available now for $571.10 from Trinamic authorized distributors. The design CAD files for the TMCM-1617-GRIP-REF are freely available on the Trinamic's GitHub repository.

All trademarks are property of their respective owners.

About TRINAMIC Motion Control

TRINAMIC Motion Control, now part of Maxim Integrated, makes motion control as easy as 1-2-3. By transforming digital information into precise physical motion, we are making the impossible possible.

Empowering intelligent motion now becomes achievable by combining Maxim Integrated's analog power process and communications technology with Trinamic's motion control expertise. Trinamic's state-of-the-art ICs, modules, mechatronic systems and developer toolkits enable software engineers to accelerate their product's time to market while providing first-pass success by developing precision drives that enable efficient, smooth and quiet motion.

Contact:        

Gayle Bullock


408-464-2516


Gayle.Bullock@maximintegrated.com

Cision View original content to download multimedia:http://www.prnewswire.com/news-releases/trinamics-open-source-reference-design-shrinks-and-speeds-development-of-end-of-arm-tooling-301299220.html

SOURCE Maxim Integrated Products, Inc.

FAQ

What is the TMCM-1617-GRIP-REF reference design by Maxim Integrated?

The TMCM-1617-GRIP-REF is an open-source reference design that simplifies the development of industrial robotic end-of-arm tooling, reducing size and development time.

What are the key features of the TMCM-1617-GRIP-REF?

Key features include integrated hardware-based field-oriented control, three communication ports, and compatibility with industrial communication protocols.

How much does the TMCM-1617-GRIP-REF reference design cost?

The TMCM-1617-GRIP-REF reference design is priced at $571.10.

What components are included in the TMCM-1617-GRIP-REF design?

The design includes the MAX22000 high-precision analog input/output and the MAX14906 quad-channel digital input/output.

How does the TMCM-1617-GRIP-REF enhance productivity?

It allows real-time adjustments of servo drive modes for increased flexibility and higher factory throughput.

MXIM

NASDAQ:MXIM

MXIM Rankings

MXIM Latest News

MXIM Stock Data

267.05M
Semiconductor and Related Device Manufacturing
Manufacturing
Link
US
San Jose