STOCK TITAN

MicroAlgo Inc. Develops Quantum Edge Detection Algorithm, Offering New Solutions for Real-Time Image Processing and Edge Intelligence Devices

Rhea-AI Impact
(Low)
Rhea-AI Sentiment
(Neutral)
Tags
MicroAlgo (NASDAQ: MLGO) has announced a breakthrough in quantum edge detection algorithm development. The new technology reduces computational complexity from O(N²) to O(N) while maintaining accuracy for real-time image processing. The algorithm uses quantum state encoding and quantum convolution principles, leveraging quantum parallelism for simultaneous pixel processing. The technology follows a hybrid architecture combining quantum preprocessing, feature extraction, and classical post-processing. Notable achievements include energy consumption at 1/100th of traditional GPU clusters and successful applications in medical imaging, remote sensing, industrial inspection, and autonomous driving. Key implementations include precise brain tumor boundary detection in MRI scans, waterline extraction in complex sea conditions, sub-pixel-level crack detection in industrial components, and improved lane line recognition in autonomous vehicles during adverse weather conditions.
MicroAlgo (NASDAQ: MLGO) ha annunciato una svolta nello sviluppo di algoritmi quantistici per il rilevamento dei bordi. La nuova tecnologia riduce la complessità computazionale da O(N²) a O(N) mantenendo l'accuratezza per l'elaborazione delle immagini in tempo reale. L'algoritmo utilizza la codifica degli stati quantistici e i principi della convoluzione quantistica, sfruttando il parallelismo quantistico per elaborare simultaneamente i pixel. La tecnologia si basa su un'architettura ibrida che combina pre-elaborazione quantistica, estrazione delle caratteristiche e post-elaborazione classica. Tra i risultati più rilevanti vi sono un consumo energetico pari a 1/100 di quello dei tradizionali cluster GPU e applicazioni di successo in imaging medico, telerilevamento, ispezione industriale e guida autonoma. Implementazioni chiave includono la rilevazione precisa dei confini dei tumori cerebrali nelle scansioni MRI, l'estrazione della linea di galleggiamento in condizioni marine complesse, la rilevazione di crepe a livello sub-pixel nei componenti industriali e il miglioramento del riconoscimento delle linee di corsia nei veicoli autonomi in condizioni meteorologiche avverse.
MicroAlgo (NASDAQ: MLGO) ha anunciado un avance en el desarrollo de algoritmos cuánticos para la detección de bordes. La nueva tecnología reduce la complejidad computacional de O(N²) a O(N) manteniendo la precisión para el procesamiento de imágenes en tiempo real. El algoritmo utiliza codificación de estados cuánticos y principios de convolución cuántica, aprovechando el paralelismo cuántico para procesar píxeles simultáneamente. La tecnología sigue una arquitectura híbrida que combina preprocesamiento cuántico, extracción de características y posprocesamiento clásico. Logros destacados incluyen un consumo energético equivalente a 1/100 del de los clusters tradicionales de GPU y aplicaciones exitosas en imágenes médicas, teledetección, inspección industrial y conducción autónoma. Implementaciones clave incluyen la detección precisa de los límites de tumores cerebrales en escáneres de MRI, extracción de la línea de agua en condiciones marinas complejas, detección de grietas a nivel subpíxel en componentes industriales y mejora del reconocimiento de líneas de carril en vehículos autónomos durante condiciones meteorológicas adversas.
MicroAlgo(NASDAQ: MLGO)는 양자 에지 검출 알고리즘 개발에서 획기적인 성과를 발표했습니다. 이 새로운 기술은 실시간 이미지 처리를 위한 정확도를 유지하면서 계산 복잡도를 O(N²)에서 O(N)으로 줄였습니다. 알고리즘은 양자 상태 인코딩과 양자 컨볼루션 원리를 활용하며, 양자 병렬 처리를 통해 픽셀을 동시에 처리합니다. 이 기술은 양자 전처리, 특징 추출, 고전적 후처리를 결합한 하이브리드 아키텍처를 따릅니다. 주목할 만한 성과로는 전통적인 GPU 클러스터 대비 1/100 수준의 에너지 소비와 의료 영상, 원격 탐사, 산업 검사, 자율 주행 분야에서의 성공적인 적용이 있습니다. 주요 적용 사례로는 MRI 스캔에서 뇌종양 경계 정밀 검출, 복잡한 해상 조건에서의 수위선 추출, 산업 부품의 서브픽셀 수준 균열 검출, 악천후 조건에서 자율주행 차량의 차선 인식 향상이 포함됩니다.
MicroAlgo (NASDAQ : MLGO) a annoncé une avancée majeure dans le développement d'un algorithme quantique de détection des contours. Cette nouvelle technologie réduit la complexité computationnelle de O(N²) à O(N) tout en conservant la précision pour le traitement d'images en temps réel. L'algorithme utilise le codage des états quantiques et les principes de convolution quantique, tirant parti du parallélisme quantique pour traiter simultanément les pixels. La technologie repose sur une architecture hybride combinant un prétraitement quantique, l'extraction de caractéristiques et un post-traitement classique. Parmi les réalisations notables figurent une consommation d'énergie équivalente à 1/100 de celle des clusters GPU traditionnels et des applications réussies en imagerie médicale, télédétection, inspection industrielle et conduite autonome. Les mises en œuvre clés incluent la détection précise des limites des tumeurs cérébrales dans les IRM, l'extraction de la ligne d'eau en conditions marines complexes, la détection de fissures au niveau sous-pixel dans les composants industriels et l'amélioration de la reconnaissance des lignes de voie dans les véhicules autonomes en conditions météorologiques difficiles.
MicroAlgo (NASDAQ: MLGO) hat einen Durchbruch bei der Entwicklung eines quantenbasierten Kantenerkennungsalgorithmus bekanntgegeben. Die neue Technologie reduziert die Rechenkomplexität von O(N²) auf O(N), während sie die Genauigkeit für die Echtzeit-Bildverarbeitung beibehält. Der Algorithmus nutzt Quanten-Zustandscodierung und Prinzipien der Quantenfaltung und setzt Quantenparallelität für die gleichzeitige Verarbeitung von Pixeln ein. Die Technologie basiert auf einer hybriden Architektur, die Quanten-Vorverarbeitung, Merkmalsextraktion und klassische Nachbearbeitung kombiniert. Zu den bemerkenswerten Erfolgen zählen ein Energieverbrauch von nur 1/100 im Vergleich zu herkömmlichen GPU-Clustern sowie erfolgreiche Anwendungen in der medizinischen Bildgebung, Fernerkundung, industriellen Inspektion und im autonomen Fahren. Wichtige Implementierungen umfassen die präzise Erkennung von Hirntumorgrenzen in MRT-Scans, die Extraktion der Wasserlinie bei komplexen Meeresbedingungen, die Erkennung von Rissen auf Subpixel-Ebene in Industriekomponenten und die verbesserte Erkennung von Fahrbahnmarkierungen in autonomen Fahrzeugen bei widrigen Wetterbedingungen.
Positive
  • Significant reduction in computational complexity from O(N²) to O(N)
  • Energy consumption reduced to 1/100th of traditional GPU clusters
  • Successfully implemented in multiple high-value applications (medical imaging, autonomous driving, industrial inspection)
  • Cross-platform quantum programming framework supporting various quantum computer types
Negative
  • None.

Insights

MicroAlgo's quantum edge detection algorithm offers O(N) computational efficiency with practical applications across multiple industries, demonstrating significant technical advancement.

MicroAlgo's quantum edge detection algorithm represents a breakthrough in computational efficiency, reducing complexity from O(N²) to O(N) while maintaining detection accuracy. This is no small achievement in algorithmic design. The hybrid architecture they've implemented—combining quantum preprocessing, quantum feature extraction, and classical post-processing—shows sophisticated understanding of quantum computing's practical limitations.

Their quantum encoding approach is particularly impressive, using just 3 qubits per pixel for 8-bit grayscale images and leveraging quantum superposition to simultaneously represent multiple pixels' information. This efficient encoding method addresses one of the major barriers in quantum image processing.

The parameterized quantum circuit design using RY gates and CNOT gates allows for trainable filters, making the algorithm adaptable to different edge detection scenarios. Their variational quantum algorithm (VQA) approach with classical optimization feedback loops represents current best practices in practical quantum algorithm development.

What's most notable is the 100-fold reduction in energy consumption compared to traditional GPU clusters. This efficiency gain could provide significant competitive advantage in resource-intensive image processing applications.

The implementation across diverse fields—medical imaging, remote sensing, industrial inspection, and autonomous driving—demonstrates versatility beyond theoretical applications. Particularly valuable is the algorithm's performance in challenging conditions, such as sub-pixel-level crack detection and improved recognition in adverse weather, where classical algorithms typically struggle.

While quantum computing hardware remains limited, MicroAlgo's cross-platform framework supporting various quantum computer types (superconducting and ion-trap) positions them well for the evolving quantum hardware landscape.

MicroAlgo's quantum algorithm achieves superior edge detection with practical applications in medical imaging, remote sensing, and autonomous driving.

The quantum edge detection algorithm developed by MicroAlgo represents a significant advancement over classical computer vision techniques. The reduction in computational complexity from O(N²) to O(N) addresses one of the primary bottlenecks in real-time image processing systems, especially for resource-constrained edge devices.

The algorithm's implementation details reveal sophisticated design choices. Their quantum directional gradient operator achieves multi-directional edge responses through quantum state phase rotation, providing more comprehensive edge information than classical operators like Sobel. The quantum noise suppression circuit utilizing error correction codes is particularly valuable for dealing with salt-and-pepper noise, a common challenge in industrial and medical imaging.

In practical applications, the technology demonstrates clear advantages: precise tumor boundary localization in MRI scans, waterline extraction under complex sea conditions, and sub-pixel crack detection in industrial components. These use cases highlight scenarios where traditional algorithms typically struggle with accuracy or efficiency constraints.

For autonomous driving applications, the improved lane line recognition in heavy rain conditions addresses a critical safety challenge. Extending the effective recognition distance provides autonomous systems with valuable additional reaction time in hazardous conditions.

The adaptive thresholding implementation using Otsu's method for the classical post-processing stage shows thoughtful integration of proven classical techniques where appropriate, rather than forcing quantum approaches where they don't add value.

The planned expansion into multimodal image fusion and encrypted image analysis aligns with emerging industry needs, particularly in sensitive applications like medical imaging and security where privacy concerns intersect with processing requirements.

SHENZHEN, China, May 1, 2025 /PRNewswire/ -- MicroAlgo Inc. (the "Company" or "MicroAlgo") (NASDAQ: MLGO), announced today that their newly developed quantum edge detection algorithm has broken through the limitations of classical methods. This technology optimizes the feature extraction process through quantum circuits, reducing computational complexity from O(N²) to O(N) while maintaining detection accuracy, thereby providing new solutions for real-time image processing and edge intelligence devices.

The quantum image edge detection algorithm is based on quantum state encoding and quantum convolution principles. It maps image pixel information into quantum state vectors and performs feature enhancement and edge extraction through quantum gate operations. The core idea is to leverage quantum parallelism to simultaneously process multiple pixel neighborhoods, using quantum superposition states to simulate the weighted summation process of classical convolution kernels. For example, the quantum Sobel operator enhances gradient responses in edge regions through quantum amplitude amplification techniques, while the quantum Canny algorithm utilizes quantum state entanglement to achieve collaborative multi-scale edge detection. Compared to classical algorithms, quantum methods demonstrate significant advantages in noise robustness, multi-scale feature fusion, and computational energy efficiency.

MicroAlgo's quantum edge detection technology follows a hybrid architecture of "quantum preprocessing - quantum feature extraction - classical post-processing."

Image Quantum Encoding: A two-dimensional image matrix is converted into a quantum state input. Using amplitude encoding techniques, pixel grayscale values are mapped to the probability amplitudes of quantum states, and spatial domain information is transformed into a frequency domain representation via the quantum Fourier transform. For instance, for an 8-bit grayscale image, 3 qubits are used to encode each pixel, with quantum superposition states simultaneously representing the feature information of multiple pixels.

Quantum Edge Detection Operations: A quantum convolution circuit is constructed to simulate an edge detection kernel. Parameterized quantum gates (such as RY gates and CNOT gates) are used to design trainable quantum filters, dynamically adjusting the sensitivity and directionality of edge detection. For example, a quantum directional gradient operator achieves multi-directional edge responses by rotating the phase of quantum states, while a quantum noise suppression circuit leverages quantum error correction codes to reduce the impact of salt-and-pepper noise.

Quantum Measurement and Result Decoding: Projective measurements are performed on the quantum states, converting quantum probability amplitudes into classical probability distributions. Edge images are reconstructed using maximum likelihood estimation or Bayesian inference, followed by binarization processing with adaptive thresholding algorithms (e.g., Otsu).

Hybrid Optimization Framework: A variational quantum algorithm (VQA) is employed to optimize the parameters of the quantum circuit. A classical optimizer (e.g., Adam) adjusts the quantum gate parameters based on edge detection performance metrics (such as recall and accuracy), achieving algorithm adaptability through a quantum-classical feedback loop.

MicroAlgo's quantum machine learning algorithms leverage quantum state superposition and parallel processing capabilities to achieve groundbreaking improvements in computational efficiency, resource consumption, model generalization, and hardware compatibility. Its Quantum Principal Component Analysis (QPCA) reduces the time complexity of high-dimensional data feature extraction from O(N²) in classical algorithms to O(N), with energy consumption only 1/100th that of traditional GPU clusters. The quantum state superposition property significantly expands the feature exploration space, effectively avoiding local optima issues. A cross-platform quantum programming framework supports various types of quantum computers, such as superconducting and ion-trap systems, lowering the barriers to technological implementation and providing revolutionary solutions for fields like drug development, financial risk control, and image recognition.

 

The quantum edge detection algorithm has already been applied in practical scenarios across medical imaging analysis, remote sensing image processing, industrial quality inspection, and autonomous driving. In the medical field, it precisely locates brain tumor boundaries in MRI scans, enhancing detection speed. In remote sensing, it rapidly extracts waterlines under complex sea conditions, reducing false detection rates. In industrial quality inspection, it enables sub-pixel-level crack detection in precision components, lowering miss rates. In autonomous driving, combined with LiDAR data, it improves lane line recognition accuracy in heavy rain, extending effective recognition distance.

Looking ahead, MicroAlgo's quantum edge detection algorithm will further expand into areas such as multimodal image fusion, encrypted image analysis, and photonic quantum chip integration, reshaping image processing paradigms in fields like intelligent security and biomedical research.

About MicroAlgo Inc.

MicroAlgo Inc. (the "MicroAlgo"), a Cayman Islands exempted company, is dedicated to the development and application of bespoke central processing algorithms. MicroAlgo provides comprehensive solutions to customers by integrating central processing algorithms with software or hardware, or both, thereby helping them to increase the number of customers, improve end-user satisfaction, achieve direct cost savings, reduce power consumption, and achieve technical goals. The range of MicroAlgo's services includes algorithm optimization, accelerating computing power without the need for hardware upgrades, lightweight data processing, and data intelligence services. MicroAlgo's ability to efficiently deliver software and hardware optimization to customers through bespoke central processing algorithms serves as a driving force for MicroAlgo's long-term development.

Forward-Looking Statements

This press release contains statements that may constitute "forward-looking statements." Forward-looking statements are subject to numerous conditions, many of which are beyond the control of MicroAlgo, including those set forth in the Risk Factors section of MicroAlgo's periodic reports on Forms 10-K and 8-K filed with the SEC. Copies are available on the SEC's website, www.sec.gov. Words such as "expect," "estimate," "project," "budget," "forecast," "anticipate," "intend," "plan," "may," "will," "could," "should," "believes," "predicts," "potential," "continue," and similar expressions are intended to identify such forward-looking statements. These forward-looking statements include, without limitation, MicroAlgo's expectations with respect to future performance and anticipated financial impacts of the business transaction.

MicroAlgo undertakes no obligation to update these statements for revisions or changes after the date of this release, except as may be required by law.

 

 

 

Cision View original content:https://www.prnewswire.com/news-releases/microalgo-inc-develops-quantum-edge-detection-algorithm-offering-new-solutions-for-real-time-image-processing-and-edge-intelligence-devices-302444220.html

SOURCE Microalgo.INC

FAQ

What is MLGO's new quantum edge detection algorithm and how does it improve performance?

MLGO's quantum edge detection algorithm uses quantum state encoding and convolution principles to reduce computational complexity from O(N²) to O(N) while maintaining accuracy. It processes multiple pixels simultaneously through quantum parallelism.

How much energy does MLGO's quantum algorithm save compared to traditional methods?

The algorithm consumes only 1/100th of the energy compared to traditional GPU clusters, offering significant efficiency improvements.

What are the main applications of MLGO's quantum edge detection technology?

The technology is applied in medical imaging (tumor detection), remote sensing (waterline extraction), industrial quality inspection (crack detection), and autonomous driving (lane recognition in poor weather).

How does MLGO's quantum edge detection algorithm work in autonomous driving?

Combined with LiDAR data, the algorithm improves lane line recognition accuracy in heavy rain conditions and extends effective recognition distance for autonomous vehicles.

What is the architecture of MLGO's quantum edge detection system?

The system uses a hybrid architecture combining quantum preprocessing, quantum feature extraction, and classical post-processing, with quantum state encoding for image processing.
MicroAlgo Inc

NASDAQ:MLGO

MLGO Rankings

MLGO Latest News

MLGO Stock Data

78.98M
8.12M
1.85%
7.1%
37.06%
Software - Infrastructure
Services-computer Programming Services
Link
China
NEW YORK