Lightwave Logic Announces Controlled Availability of Silicon Photonics Process Design Kit for Advanced Electro-Optic Polymer Integration
Lightwave Logic (NASDAQ:LWLG) has announced the controlled availability of its Process Design Kit (PDK) for integrating electro-optic (EO) polymers into Silicon Photonic Integrated Circuits using their novel Back-End-of-Line process.
The company's BEOL process includes key steps like EO polymer application, patterning, etching, and ALD encapsulation, designed to be compatible with existing semiconductor fabrication lines. The process can be applied at both wafer and chip levels up to the dicing stage.
The PDK has already been implemented with two semiconductor foundries, demonstrating its potential to enhance silicon photonic devices for higher bandwidth and lower power consumption in AI and networking applications. The technology aims to overcome traditional silicon photonics limitations in scaling to 200Gbps and 400Gbps data rates, with capabilities reaching 3.2 Tbps and beyond.
Lightwave Logic (NASDAQ:LWLG) ha annunciato la disponibilità controllata del suo Kit di Progettazione di Processo (PDK) per integrare polimeri elettro-ottici (EO) nei Circuiti Integrati Fotonic Siliconici utilizzando il loro innovativo processo di Back-End-of-Line.
Il processo BEOL dell'azienda include passaggi chiave come l'applicazione del polimero EO, la creazione di modelli, l'incisione e l'incapsulamento ALD, progettati per essere compatibili con le linee di fabbricazione dei semiconduttori esistenti. Il processo può essere applicato sia a livello di wafer che di chip fino alla fase di taglio.
Il PDK è già stato implementato con due fonderie di semiconduttori, dimostrando il suo potenziale per migliorare i dispositivi fotonici in silicio per una maggiore larghezza di banda e un minore consumo energetico nelle applicazioni di intelligenza artificiale e networking. La tecnologia mira a superare i limiti tradizionali della fotonica in silicio nella scalabilità a velocità di dati di 200Gbps e 400Gbps, con capacità che raggiungono 3,2 Tbps e oltre.
Lightwave Logic (NASDAQ:LWLG) ha anunciado la disponibilidad controlada de su Kit de Diseño de Proceso (PDK) para integrar polímeros electro-ópticos (EO) en Circuitos Integrados Fotónicos de Silicio utilizando su novedoso proceso de Back-End-of-Line.
El proceso BEOL de la empresa incluye pasos clave como la aplicación de polímero EO, el diseño de patrones, el grabado y la encapsulación ALD, diseñado para ser compatible con las líneas de fabricación de semiconductores existentes. El proceso se puede aplicar tanto a nivel de oblea como de chip hasta la etapa de corte.
El PDK ya se ha implementado con dos fundiciones de semiconductores, demostrando su potencial para mejorar los dispositivos fotónicos de silicio para un mayor ancho de banda y menor consumo de energía en aplicaciones de inteligencia artificial y redes. La tecnología tiene como objetivo superar las limitaciones tradicionales de la fotónica de silicio en la escalabilidad a tasas de datos de 200Gbps y 400Gbps, con capacidades que alcanzan 3.2 Tbps y más.
라이트웨이브 로직 (NASDAQ:LWLG)는 혁신적인 백엔드 오브 라인 프로세스를 사용하여 실리콘 포토닉 집적 회로에 전기-광학(EO) 폴리머를 통합하기 위한 프로세스 디자인 키트(PDK)의 제한된 가용성을 발표했습니다.
회사의 BEOL 프로세스에는 EO 폴리머 적용, 패턴 형성, 에칭 및 ALD 캡슐화와 같은 주요 단계가 포함되어 있으며, 기존 반도체 제조 라인과의 호환성을 위해 설계되었습니다. 이 프로세스는 웨이퍼 및 칩 수준 모두에서 절단 단계까지 적용할 수 있습니다.
PDK는 이미 두 개의 반도체 파운드리에서 구현되어, 인공지능 및 네트워킹 애플리케이션에서 더 높은 대역폭과 낮은 전력 소비를 위한 실리콘 포토닉 장치를 향상시킬 수 있는 잠재력을 보여주었습니다. 이 기술은 200Gbps 및 400Gbps 데이터 전송 속도로 확장하는 전통적인 실리콘 포토닉스의 한계를 극복하는 것을 목표로 하며, 3.2 Tbps 이상의 성능을 제공합니다.
Lightwave Logic (NASDAQ:LWLG) a annoncé la disponibilité contrôlée de son Kit de Conception de Processus (PDK) pour intégrer des polymères électro-optiques (EO) dans des Circuits Intégrés Photoniques en Silicium en utilisant leur nouveau processus de Back-End-of-Line.
Le processus BEOL de l'entreprise comprend des étapes clés telles que l'application de polymère EO, le motifage, la gravure et l'encapsulation ALD, conçu pour être compatible avec les lignes de fabrication de semi-conducteurs existantes. Le processus peut être appliqué à la fois au niveau des plaquettes et des puces jusqu'à l'étape de découpe.
Le PDK a déjà été mis en œuvre avec deux fonderies de semi-conducteurs, démontrant son potentiel pour améliorer les dispositifs photoniques en silicium pour une plus grande bande passante et une consommation d'énergie réduite dans les applications d'intelligence artificielle et de mise en réseau. La technologie vise à surmonter les limitations traditionnelles de la photonique en silicium dans la mise à l'échelle à des débits de données de 200Gbps et 400Gbps, avec des capacités atteignant 3,2 Tbps et plus.
Lightwave Logic (NASDAQ:LWLG) hat die kontrollierte Verfügbarkeit seines Prozessdesign-Kits (PDK) angekündigt, um elektro-optische (EO) Polymere in Silizium-Photonischen Integrierten Schaltungen mithilfe ihres neuartigen Back-End-of-Line-Prozesses zu integrieren.
Der BEOL-Prozess des Unternehmens umfasst wichtige Schritte wie die Anwendung von EO-Polymer, Mustererstellung, Ätzen und ALD-Einkapselung, die so konzipiert sind, dass sie mit bestehenden Halbleiterfertigungslinien kompatibel sind. Der Prozess kann sowohl auf Wafer- als auch auf Chip-Ebene bis zur Trennungsstufe angewendet werden.
Das PDK wurde bereits mit zwei Halbleiterfoundries implementiert und zeigt das Potenzial, Silizium-Photonikgeräte für höhere Bandbreite und geringeren Energieverbrauch in Anwendungen der künstlichen Intelligenz und Netzwerktechnik zu verbessern. Die Technologie zielt darauf ab, die traditionellen Grenzen der Silizium-Photonik bei der Skalierung auf Datenraten von 200Gbps und 400Gbps zu überwinden, mit Fähigkeiten, die 3,2 Tbps und mehr erreichen.
- Successfully implemented PDK with two semiconductor foundries
- Technology enables data rates up to 3.2 Tbps
- BEOL process compatible with existing semiconductor fabrication lines
- Solution offers cost and scalability advantages over alternatives
- None.
Insights
Lightwave Logic's release of their Process Design Kit (PDK) represents a significant milestone in their commercialization journey. The PDK enables semiconductor manufacturers to integrate LWLG's electro-optic polymers into silicon photonic circuits using their novel Back-End-of-Line process – a critical technical advancement that addresses fundamental limitations in the industry.
The technical significance can't be overstated: Silicon photonics faces inherent bandwidth limitations at 200Gbps and 400Gbps data rates due to charge-carrier effects, creating bottlenecks for AI and data center applications. LWLG's polymer technology offers multiple advantages: ultra-fast response times, reduced power consumption, and high electro-optic coefficients – all while maintaining compatibility with existing semiconductor manufacturing infrastructure.
Most tellingly, the PDK has already been implemented with two semiconductor foundries, demonstrating real-world validation beyond the lab. This BEOL process compatibility with established fabrication lines significantly reduces adoption barriers for potential customers and partners.
The company's focus on achieving 3.2 Tbps and beyond positions them well against competing technologies like thin-film lithium niobate or indium phosphide, especially by preserving silicon photonics' cost and scalability advantages – crucial factors for widespread industry adoption.
This advancement signals LWLG's transition from pure R&D toward commercial readiness in addressing next-generation optical networking demands.
Management team to attend the Optical Fiber Conference in San Francisco
DENVER, COLORADO / ACCESS Newswire / March 28, 2025 / Lightwave Logic, Inc. (NASDAQ:LWLG) (the "Company"), a technology platform company leveraging its proprietary electro-optic (EO) polymers to transmit data at higher speeds with less power, today announced the controlled availability of its cutting-edge Process Design Kit (PDK). This PDK enables the integration of the Company's advanced EO polymers into Silicon Photonic Integrated Circuits (Si-PICs) using Lightwave Logic's novel Back-End-of-Line (BEOL) process.
Despite the significant advancements in silicon photonics, scaling up to data rates of 200Gbps and 400Gbps presents inherent challenges. Traditional silicon photonics-based modulators face bandwidth limitations due to their reliance on charge-carrier effects, leading to increased power consumption and signal degradation at higher speeds. As data center and AI-driven networking demands continue to push for greater bandwidth efficiency, alternative materials such as EO polymers are poised to play a disruptive role in overcoming these bottlenecks. Polymers offer ultra-fast response times, low power consumption, and high electro-optic coefficients, making them a compelling solution to enhance the performance of silicon photonics beyond its conventional limits.
Consistent with its mission to augment silicon photonics performance to meet the stringent bandwidth and power consumption needs of artificial intelligence and networking applications across multiple generations, Lightwave Logic's groundbreaking BEOL process encompasses key steps including EO polymer application, patterning and etching, Atomic Layer Deposition (ALD) encapsulation, EO polymer poling, contact pad opening, chip dicing, and end face creation and polishing. Crucially, the BEOL process is designed for compatibility with existing semiconductor fabrication lines, facilitating seamless integration with silicon photonic device manufacturing flows. This process offers flexibility, applicable at both wafer and chip levels up to the dicing stage.
This advancement marks a significant step forward in the development of high-performance devices capable of 3.2 Tbps and beyond while preserving silicon photonics' unique cost and scalability advantages compared to alternatives such as thin-film lithium niobate or indium phosphide, which is crucial to the future of the industry.
"Our cutting-edge PDK represents a pivotal development in integrating our advanced EO polymers with silicon photonics," said Yves LeMaitre, Chief Executive Officer of Lightwave Logic. "By offering a BEOL process compatible with existing semiconductor fabrication lines, we enable our partners to seamlessly enhance their silicon photonic devices, meeting the ever-increasing demands for higher bandwidth and lower power consumption in AI and networking applications."
This PDK has already been implemented as part of collaborative efforts with two semiconductor foundries. These demonstrations highlight the PDK's potential to accelerate the commercialization of EO polymer-enabled silicon photonic devices, reinforcing Lightwave Logic's leadership in next-generation optical technologies.
In addition, Lightwave Logic will attend the 2025 Optical Fiber Conference, the premier global event for optical networking and communications, from March 30 through April 3, at the Moscone Center in San Francisco, CA.
Management has arranged a private meeting room on the showroom floor. Parties interested in scheduling a meeting may contact Atikem Haile, Lightwave Logic's VP of Marketing and Business Development, at atikem.haile@lightwavelogic.com.
For more information about Lightwave Logic and its technologies, please visit the company's website at www.lightwavelogic.com.
About Lightwave Logic, Inc.
Lightwave Logic, Inc. (NASDAQ: LWLG) www.lightwavelogic.com is a technology platform company leveraging its proprietary engineered electro-optic (EO) polymers to transmit data at higher speeds with less power in a small form factor. The Company's high activity and high stability organic polymers allow it to create next-generation photonic EO devices that convert data from electrical signals into light/optical signals for applications in telecommunications, and for data transmission potentially used to support generative AI.
Safe Harbor Statement
The information posted in this release may contain forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. You can identify these statements by use of the words "may," "will," "should," "plans," "explores," "expects," "anticipates," "continue," "estimate," "project," "intend," and similar expressions. Forward-looking statements involve risks and uncertainties that could cause actual results to differ materially from those projected or anticipated. These risks and uncertainties include, but are not limited to, lack of available funding; general economic and business conditions; competition from third parties; intellectual property rights of third parties; regulatory constraints; changes in technology and methods of marketing; delays in completing various engineering and manufacturing programs; changes in customer order patterns; changes in product mix; success in technological advances and delivering technological innovations; shortages in components; production delays due to performance quality issues with outsourced components; those events and factors described by us in Item 1.A "Risk Factors" in our most recent Form 10-K and 10-Q; other risks to which our company is subject; other factors beyond the company's control.
Contacts:
Ryan Coleman or Nick Teves
Alpha IR Group for Lightwave Logic
lwlg@alpha-ir.com
312-445-2870
SOURCE: Lightwave Logic
View the original press release on ACCESS Newswire