MicroCloud Hologram Inc. Proposes a New Theory of Wasserstein Distance Extended to Quantum States, Supporting Quantum Technology Innovation
MicroCloud Hologram Inc. (NASDAQ: HOLO) has proposed a groundbreaking theory extending Wasserstein distance to quantum states, advancing quantum technology research. The company has established a natural correspondence between quantum state transport plans and quantum channels, providing new insights into quantum information transmission.
Key developments include the proof of a modified triangle inequality for quantum state Wasserstein distance, which has practical applications in quantum error-correcting codes. HOLO has also demonstrated that the distance between a quantum state and itself relates to the Wigner-Yanase metric on the quantum state manifold, offering new geometric perspectives for studying quantum states.
Significantly, HOLO discovered that their proposed quantum state Wasserstein distance recovers classical Wasserstein distance in the semi-classical limit, bridging quantum and classical physics theories. This theoretical advancement supports the integration of quantum and classical technologies across broader applications.
MicroCloud Hologram Inc. (NASDAQ: HOLO) ha proposto una teoria innovativa che estende la distanza di Wasserstein agli stati quantistici, avanzando la ricerca nella tecnologia quantistica. L'azienda ha stabilito una corrispondenza naturale tra i piani di trasporto degli stati quantistici e i canali quantistici, fornendo nuove intuizioni sulla trasmissione dell'informazione quantistica.
Tra i principali sviluppi, si include la dimostrazione di una disuguaglianza triangolare modificata per la distanza di Wasserstein degli stati quantistici, che ha applicazioni pratiche nei codici di correzione degli errori quantistici. HOLO ha inoltre dimostrato che la distanza tra uno stato quantistico e se stesso è collegata alla metrica di Wigner-Yanase sulla varietà degli stati quantistici, offrendo nuove prospettive geometriche per lo studio degli stati quantistici.
Significativamente, HOLO ha scoperto che la distanza di Wasserstein proposta per gli stati quantistici recupera la distanza di Wasserstein classica nel limite semiclassico, creando un ponte tra le teorie fisiche quantistiche e classiche. Questo avanzamento teorico supporta l'integrazione delle tecnologie quantistiche e classiche in applicazioni più ampie.
MicroCloud Hologram Inc. (NASDAQ: HOLO) ha propuesto una teoría revolucionaria que extiende la distancia de Wasserstein a estados cuánticos, avanzando la investigación en tecnología cuántica. La compañía ha establecido una correspondencia natural entre los planes de transporte de estados cuánticos y los canales cuánticos, proporcionando nuevas perspectivas sobre la transmisión de información cuántica.
Los desarrollos clave incluyen la prueba de una desigualdad triangular modificada para la distancia de Wasserstein de estados cuánticos, que tiene aplicaciones prácticas en códigos de corrección de errores cuánticos. HOLO también ha demostrado que la distancia entre un estado cuántico y sí mismo se relaciona con la métrica de Wigner-Yanase en la variedad de estados cuánticos, ofreciendo nuevas perspectivas geométricas para el estudio de los estados cuánticos.
Significativamente, HOLO descubrió que su distancia de Wasserstein propuesta para estados cuánticos recupera la distancia de Wasserstein clásica en el límite semiclasico, creando un puente entre las teorías físicas cuánticas y clásicas. Este avance teórico apoya la integración de tecnologías cuánticas y clásicas en aplicaciones más amplias.
MicroCloud Hologram Inc. (NASDAQ: HOLO)는 양자 상태에 대한 Wasserstein 거리 이론을 확장하는 획기적인 이론을 제안하여 양자 기술 연구를 발전시켰습니다. 이 회사는 양자 상태 수송 계획과 양자 채널 간의 자연스러운 대응 관계를 설정하여 양자 정보 전송에 대한 새로운 통찰력을 제공했습니다.
주요 발전 사항에는 양자 상태 Wasserstein 거리의 변형된 삼각 부등식 증명이 포함되며, 이는 양자 오류 수정 코드에 실용적인 응용 프로그램이 있습니다. HOLO는 또한 양자 상태와 그 자신 간의 거리가 양자 상태 다양체에서 Wigner-Yanase 메트릭과 관련이 있음을 입증하여 양자 상태 연구를 위한 새로운 기하학적 관점을 제공합니다.
상당히 HOLO는 제안된 양자 상태 Wasserstein 거리가 반고전적 한계에서 고전적 Wasserstein 거리를 회복한다는 것을 발견하여 양자와 고전 물리학 이론 간의 다리를 놓았습니다. 이 이론적 발전은 보다 광범위한 응용 프로그램에서 양자 및 고전 기술의 통합을 지원합니다.
MicroCloud Hologram Inc. (NASDAQ: HOLO) a proposé une théorie révolutionnaire étendant la distance de Wasserstein aux états quantiques, faisant progresser la recherche en technologie quantique. L'entreprise a établi une correspondance naturelle entre les plans de transport d'états quantiques et les canaux quantiques, fournissant de nouvelles perspectives sur la transmission de l'information quantique.
Les développements clés incluent la preuve d'une inégalité triangulaire modifiée pour la distance de Wasserstein des états quantiques, qui a des applications pratiques dans les codes de correction d'erreurs quantiques. HOLO a également démontré que la distance entre un état quantique et lui-même est liée à la métrique de Wigner-Yanase sur la variété des états quantiques, offrant ainsi de nouvelles perspectives géométriques pour l'étude des états quantiques.
De manière significative, HOLO a découvert que la distance de Wasserstein qu'ils proposent pour les états quantiques récupère la distance de Wasserstein classique dans la limite semi-classique, créant ainsi un pont entre les théories physiques quantiques et classiques. Cette avancée théorique soutient l'intégration des technologies quantiques et classiques dans des applications plus larges.
MicroCloud Hologram Inc. (NASDAQ: HOLO) hat eine bahnbrechende Theorie vorgeschlagen, die den Wasserstein-Abstand auf Quantenstate ausdehnt und die Forschung im Bereich der Quanten-Technologie vorantreibt. Das Unternehmen hat eine natürliche Entsprechung zwischen Transportplänen von Quantenstate und Quantenkanälen hergestellt, die neue Einblicke in die Übertragung quanteninformation bieten.
Zu den wichtigsten Entwicklungen gehört der Nachweis einer modifizierten Dreiecksungleichung für den Wasserstein-Abstand quantenstaatlicher, der praktische Anwendungen in quantenkorrektur-Codes hat. HOLO hat auch gezeigt, dass der Abstand zwischen einem Quantenstate und sich selbst mit der Wigner-Yanase-Metrik auf der Mannigfaltigkeit der Quantenstaate in Beziehung steht und neue geometrische Perspektiven für das Studium quantenstaatlicher eröffnet.
Bedeutsam ist, dass HOLO entdeckt hat, dass ihr vorgeschlagener Wasserstein-Abstand für Quantenstate im halbklassischen Limit den klassischen Wasserstein-Abstand zurückgewinnt und somit eine Brücke zwischen quanten- und klassischer Physik-Theorien schlägt. Dieser theoretische Fortschritt unterstützt die Integration von Quanten- und klassischen Technologien in breiteren Anwendungen.
- Development of innovative quantum state measurement theory
- Potential applications in quantum error correction and computing
- Theoretical breakthrough connecting quantum and classical physics
- None.
Wasserstein distance is a fundamental metric in classical probability distributions, defined based on the minimization of transport costs. It measures the minimal cost required to transform one probability distribution into another. HOLO has innovatively extended this concept to the domain of quantum states. In the quantum world, the description and manipulation of quantum states are far more complex than classical probability distributions, and HOLO's approach is undoubtedly a significant innovation.
HOLO reveals a natural correspondence between the transport plans of quantum states and quantum channels. This means that in quantum systems, the transport process can be precisely interpreted as a physical operation on the system. The discovery of this correspondence provides a more intuitive and accurate understanding of quantum information transmission and processing. In traditional quantum research, the transmission of quantum information is often viewed as an abstract process, but HOLO analyzes and grasps this process from the perspective of physical operations, laying a theoretical foundation for further optimization of applications such as quantum communication and quantum computing.
HOLO's main research focuses on the proof of the modified triangle inequality. In both mathematics and physics, the triangle inequality is a fundamental relational inequality that plays a crucial role in many theories and applications. For the Wasserstein distance extended to quantum states, HOLO has derived and proven the modified triangle inequality through rigorous theoretical derivation. The validity of this inequality not only enriches the theoretical framework of quantum state Wasserstein distance but also has significant practical implications. For example, in the design of quantum error-correcting codes, this modified triangle inequality can be used to more accurately assess errors and distortions in quantum information during transmission, thus enabling the design of more efficient and reliable quantum error correction schemes.
Additionally, HOLO has proven that the distance between a quantum state and itself is closely related to the Wigner-Yanase metric on the quantum state manifold. The quantum state manifold is an important concept for describing the structure of quantum state space, while the Wigner-Yanase metric is a key tool for characterizing the geometric properties of the quantum state manifold. HOLO's discovery reveals the intrinsic connection between the Wasserstein distance of quantum states and the geometric properties of the quantum state manifold. This connection provides a new approach to studying quantum states from a geometric perspective, aiding in a deeper understanding of the nature and characteristics of quantum states. By exploring the relationship between the distance of a quantum state to itself and the Wigner-Yanase metric, it is possible to further investigate important properties such as the stability and distinguishability of quantum states, thus providing theoretical support for the optimization of quantum information processing and quantum computing.
At the same time, HOLO discovered that in the semi-classical limit, the proposed quantum state Wasserstein distance recovers the classical Wasserstein distance. This finding reveals the intrinsic connection between the quantum state Wasserstein distance and the classical Wasserstein distance, suggesting that under certain conditions, the behavior of quantum states can transition to classical states. This connection not only helps us understand quantum phenomena from the perspective of classical physics but also provides new insights into the integration of quantum theory and classical theory. In practical applications, this characteristic in the semi-classical limit can offer theoretical support for the combination of quantum and classical technologies, promoting the application and development of quantum technologies in a broader range of fields.
HOLO's research on quantum state Wasserstein distance injects new vitality into the development of quantum information science and quantum physics. In the future, HOLO will continue to delve deeper into this field, expanding and refining related theories, and providing a more solid theoretical foundation for the practical application of quantum technologies.
About MicroCloud Hologram Inc.
MicroCloud is committed to providing leading holographic technology services to its customers worldwide. MicroCloud's holographic technology services include high-precision holographic light detection and ranging ("LiDAR") solutions, based on holographic technology, exclusive holographic LiDAR point cloud algorithms architecture design, breakthrough technical holographic imaging solutions, holographic LiDAR sensor chip design and holographic vehicle intelligent vision technology to service customers that provide reliable holographic advanced driver assistance systems ("ADAS"). MicroCloud also provides holographic digital twin technology services for customers and has built a proprietary holographic digital twin technology resource library. MicroCloud's holographic digital twin technology resource library captures shapes and objects in 3D holographic form by utilizing a combination of MicroCloud's holographic digital twin software, digital content, spatial data-driven data science, holographic digital cloud algorithm, and holographic 3D capture technology. For more information, please visit http://ir.mcholo.com/
Safe Harbor Statement
This press release contains forward-looking statements as defined by the Private Securities Litigation Reform Act of 1995. Forward-looking statements include statements concerning plans, objectives, goals, strategies, future events or performance, and underlying assumptions and other statements that are other than statements of historical facts. When the Company uses words such as "may," "will," "intend," "should," "believe," "expect," "anticipate," "project," "estimate," or similar expressions that do not relate solely to historical matters, it is making forward-looking statements. Forward-looking statements are not guarantees of future performance and involve risks and uncertainties that may cause the actual results to differ materially from the Company's expectations discussed in the forward-looking statements. These statements are subject to uncertainties and risks including, but not limited to, the following: the Company's goals and strategies; the Company's future business development; product and service demand and acceptance; changes in technology; economic conditions; reputation and brand; the impact of competition and pricing; government regulations; fluctuations in general economic; financial condition and results of operations; the expected growth of the holographic industry and business conditions in
View original content:https://www.prnewswire.com/news-releases/microcloud-hologram-inc-proposes-a-new-theory-of-wasserstein-distance-extended-to-quantum-states-supporting-quantum-technology-innovation-302358749.html
SOURCE MicroCloud Hologram Inc.
FAQ
What is the significance of HOLO's new Wasserstein distance theory for quantum states?
How does HOLO's quantum state Wasserstein distance theory connect to classical physics?
What practical applications could HOLO's quantum state theory enable?