FICO Honors Amazon Team in Competition for Groundbreaking Optimization Research
FICO has announced that an Amazon research team received recognition in the 2024 FICO® Xpress Best Paper Award competition for their groundbreaking optimization research. The team's paper, published in the European Journal of Operational Research, demonstrates how to optimize large-scale delivery networks using FICO® Xpress Solver.
The research addresses the challenges of modern online retail delivery networks by developing a sophisticated heuristic approach that can handle thousands of origins and destinations, along with over 100,000 commodities. The solution involves processing approximately half a billion variables and constraints, significantly advancing the field beyond previous research that was to hundreds of origins, destinations, and commodities.
Led by Cristiana L. Lara of Amazon's Modeling and Optimization group, the team utilized FICO® Xpress Solver's powerful optimization engine and API to develop their mixed-integer programming model. This breakthrough has direct applications for businesses operating large distribution networks and builds upon resource-task networks commonly used in chemical engineering process design.
FICO ha annunciato che un team di ricerca di Amazon ha ricevuto un riconoscimento nella competizione per il 2024 FICO® Xpress Best Paper Award per la sua ricerca pionieristica nell'ottimizzazione. Il documento del team, pubblicato sull'European Journal of Operational Research, dimostra come ottimizzare reti di consegna su larga scala utilizzando FICO® Xpress Solver.
La ricerca affronta le sfide delle reti di consegna del commercio online moderno sviluppando un approccio euristico sofisticato in grado di gestire migliaia di origini e destinazioni, oltre a più di 100.000 merci. La soluzione implica l'elaborazione di circa mezzo miliardo di variabili e vincoli, avanzando significativamente il campo rispetto alla ricerca precedente, che si limitava a centinaia di origini, destinazioni e merci.
Guidato da Cristiana L. Lara del gruppo di Modellazione e Ottimizzazione di Amazon, il team ha utilizzato il potente motore di ottimizzazione e API di FICO® Xpress Solver per sviluppare il proprio modello di programmazione intera mista. Questa innovazione ha applicazioni dirette per le aziende che operano grandi reti di distribuzione e si basa su reti risorsa-attività comunemente utilizzate nella progettazione di processi di ingegneria chimica.
FICO ha anunciado que un equipo de investigación de Amazon recibió reconocimiento en la competencia del 2024 FICO® Xpress Best Paper Award por su innovadora investigación en optimización. El documento del equipo, publicado en el European Journal of Operational Research, demuestra cómo optimizar redes de entrega a gran escala utilizando FICO® Xpress Solver.
La investigación aborda los desafíos de las redes de entrega del comercio en línea moderno, desarrollando un enfoque heurístico sofisticado que puede manejar miles de orígenes y destinos, además de más de 100,000 mercancías. La solución implica el procesamiento de aproximadamente medio billón de variables y restricciones, avanzando significativamente el campo más allá de la investigación previa que se limitaba a cientos de orígenes, destinos y mercancías.
Dirigido por Cristiana L. Lara del grupo de Modelado y Optimización de Amazon, el equipo utilizó el potente motor de optimización y API de FICO® Xpress Solver para desarrollar su modelo de programación entera mixta. Este avance tiene aplicaciones directas para las empresas que operan grandes redes de distribución y se fundamenta en redes de recursos-tareas comúnmente utilizadas en el diseño de procesos de ingeniería química.
FICO는 아마존 연구팀이 2024 FICO® Xpress Best Paper Award 경연에서 획기적인 최적화 연구로 인정을 받았다고 발표했습니다. 이 팀의 논문은 European Journal of Operational Research에 게재되었으며, FICO® Xpress Solver를 사용하여 대규모 배송 네트워크를 최적화하는 방법을 보여줍니다.
이 연구는 수천 개의 출발지와 목적지를 관리할 수 있는 세련된 휴리스틱 접근 방식을 개발하여 현대 온라인 소매 배송 네트워크의 문제를 다룹니다. 이 솔루션은 약 5억 개의 변수와 제약 조건을 처리하는 것을 포함하며, 수백 개의 출발지, 목적지 및 상품에 국한되었던 이전 연구를 넘어서는 상당한 발전을 이루었습니다.
아마존의 모델링 및 최적화 그룹의 크리스티아나 L. 라라가 이끄는 이 팀은 FICO® Xpress Solver의 강력한 최적화 엔진과 API를 활용하여 혼합 정수 프로그래밍 모델을 개발했습니다. 이 혁신은 대규모 유통 네트워크를 운영하는 기업에 직접적인 응용 프로그램이 있으며, 화학 공정 설계에서 일반적으로 사용되는 자원-작업 네트워크에 기초하고 있습니다.
FICO a annoncé qu'une équipe de recherche d'Amazon a reçu une reconnaissance dans le cadre de la compétition pour le 2024 FICO® Xpress Best Paper Award pour ses recherches révolutionnaires en optimisation. L'article de l'équipe, publié dans l'European Journal of Operational Research, démontre comment optimiser des réseaux de livraison à grande échelle en utilisant FICO® Xpress Solver.
La recherche s'attaque aux défis des réseaux de livraison modernes du commerce en ligne en développant une approche heuristique sophistiquée capable de gérer des milliers d'origines et de destinations, ainsi que plus de 100 000 marchandises. La solution implique le traitement d'environ un demi-milliard de variables et de contraintes, faisant ainsi progresser considérablement le domaine au-delà des recherches précédentes qui étaient limitées à des centaines d'origines, de destinations et de marchandises.
Dirigée par Cristiana L. Lara du groupe Modélisation et Optimisation d'Amazon, l'équipe a utilisé le puissant moteur d'optimisation et l'API de FICO® Xpress Solver pour développer son modèle de programmation en nombres entiers mixtes. Cette avancée a des applications directes pour les entreprises exploitant de grands réseaux de distribution et repose sur des réseaux ressources-tâches couramment utilisés dans la conception de processus en ingénierie chimique.
FICO hat bekannt gegeben, dass ein Forschungsteam von Amazon im Rahmen des 2024 FICO® Xpress Best Paper Award für ihre bahnbrechende Optimierungsforschung anerkannt wurde. Das Papier des Teams, veröffentlicht im European Journal of Operational Research, zeigt, wie große Liefernetzwerke mit FICO® Xpress Solver optimiert werden können.
Die Forschung behandelt die Herausforderungen moderner Online-Einzelhandels-Liefernetzwerke, indem ein ausgeklügelter heuristischer Ansatz entwickelt wird, der Tausende von Ursprungs- und Zielorten sowie über 100.000 Waren verwalten kann. Die Lösung umfasst die Verarbeitung von etwa einer halben Milliarde Variablen und Einschränkungen und bringt das Fachgebiet erheblich über frühere Forschungen hinaus, die sich auf Hunderte von Ursprüngen, Zielen und Waren beschränkten.
Unter der Leitung von Cristiana L. Lara aus der Modellierungs- und Optimierungsgruppe von Amazon nutzte das Team die leistungsstarke Optimierungs-Engine und API von FICO® Xpress Solver, um ihr Modell der gemischten ganzzahligen Programmierung zu entwickeln. Dieser Durchbruch hat direkte Anwendungen für Unternehmen, die große Verteilungsnetzwerke betreiben, und baut auf ressourcenbezogenen Netzwerken auf, die häufig im chemischen Ingenieurwesen eingesetzt werden.
- None.
- None.
FICO® Xpress Solver used by Modeling and Optimization group at Amazon to perform important research work on improving the speed and efficiency of massive delivery networks
The paper has been published in the renowned European Journal of Operational Research: https://www.sciencedirect.com/science/article/abs/pii/S0377221723000371
More information: https://community.fico.com/s/blog-post/a5QQi000002rzU1MAI/fico5206
The growth in online retailing has created the need for extremely large, extremely efficient delivery networks that operate around the clock. The Amazon team studied the design of a low-cost fulfilment network that allows for the fast shipping of packages between origins (e.g., warehouses) and destinations (e.g., customer locations).
Service Network Design problems, as they are known, are considered very hard to solve efficiently. Existing research was mostly restricted to cases with a few hundred origins, destinations and commodities. Yet, using the powerful FICO® Xpress Solver, the Amazon team developed a sophisticated heuristic approach that solves for thousands of origins and destinations, and more than 100,000 commodities.
“This kind of problem involves half a billion variables and constraints, and the Amazon team did breakthrough work in this area at this scale,” said Dr. Timo Berthold, director of Mixed-Integer Optimization at FICO who co-manages the contest. “Their work builds on resource-task networks, a modelling framework that is widely used in chemical engineering process design. The Amazon team developed a mixed-integer programming model that is solved by FICO Xpress and has wide applicability for extremely large computational problems with network flow underpinnings.”
“The potent API of Xpress enabled us to tailor our algorithms precisely to our needs, and the powerful optimization engine of FICO Xpress Solver was indispensable in achieving our results,” said Cristiana L. Lara of Amazon’s Modeling and Optimization group, who led the Amazon research team. “Our work has direct application to businesses like ours that rely on massive distribution networks.”
In 2022, the FICO® Xpress Best Paper Award was introduced to acknowledge exceptional research in Mathematical Optimization, Operations Research and related fields. Nominations for the 2025 award are due by February 14.
Recognized as one of the fastest and most powerful optimization solvers, FICO® Xpress Solver gives business users, data scientists and researchers greater power and flexibility when solving complex problems in supply chain optimization, energy, pricing and many other applications.
About FICO
FICO (NYSE: FICO) powers decisions that help people and businesses around the world prosper. Founded in 1956, the company is a pioneer in the use of predictive analytics and data science to improve operational decisions. FICO holds more than 200 US and foreign patents on technologies that increase profitability, customer satisfaction and growth for businesses in financial services, insurance, telecommunications, health care, retail and many other industries. Using FICO solutions, businesses in more than 80 countries do everything from protecting 4 billion payment cards from fraud, to improving financial inclusion, to increasing supply chain resiliency. The FICO® Score, used by
Learn more at https://www.fico.com/en.
Join the conversation at https://twitter.com/fico & https://www.fico.com/blogs/.
For FICO news and media resources, visit https://www.fico.com/en/newsroom.
FICO is a registered trademark of Fair Isaac Corporation in the
View source version on businesswire.com: https://www.businesswire.com/news/home/20250203043427/en/
Julie Huang
press@fico.com
Source: FICO
FAQ
What achievement did Amazon's research team receive in FICO's 2024 Xpress Best Paper Award competition?
How does Amazon's optimization research improve upon existing delivery network solutions?
What is the scale of variables and constraints handled in Amazon's delivery network optimization model?
Where was Amazon's optimization research paper published?