STOCK TITAN

Elastic Introduces Better Binary Quantization Technique in Elasticsearch

Rhea-AI Impact
(Low)
Rhea-AI Sentiment
(Very Positive)
Tags

Elastic (NYSE: ESTC) has introduced Better Binary Quantization (BBQ) in Elasticsearch, a new quantization approach evolved from RaBitQ technology. The innovation achieves a 95% reduction in memory requirements for storing vectorized data while maintaining high-ranking quality and similar storage efficiency as scalar quantization. BBQ is available as a tech preview for both self-managed and cloud users of Elasticsearch, and will be contributed to Apache Lucene.

Elastic (NYSE: ESTC) ha introdotto Better Binary Quantization (BBQ) in Elasticsearch, un nuovo approccio alla quantizzazione evoluto dalla tecnologia RaBitQ. L'innovazione consegue una riduzione del 95% dei requisiti di memoria per la memorizzazione dei dati vettorializzati, mantenendo al contempo un'alta qualità di ranking e un'efficienza di archiviazione simile a quella della quantizzazione scalare. BBQ è disponibile come anteprima tecnologica sia per gli utenti autogestiti che per quelli cloud di Elasticsearch e sarà contribuito ad Apache Lucene.

Elastic (NYSE: ESTC) ha presentado Better Binary Quantization (BBQ) en Elasticsearch, un nuevo enfoque de cuantización que ha evolucionado a partir de la tecnología RaBitQ. La innovación logra una reducción del 95% en los requisitos de memoria para almacenar datos vectorizados, manteniendo una alta calidad de clasificación y una eficiencia de almacenamiento similar a la cuantización escalar. BBQ está disponible como una vista previa tecnológica tanto para usuarios autogestionados como en la nube de Elasticsearch, y se contribuirá a Apache Lucene.

Elastic (NYSE: ESTC)는 Elasticsearch에 Better Binary Quantization (BBQ)를 도입했습니다. 이는 RaBitQ 기술에서 발전된 새로운 양자화 접근 방식입니다. 이 혁신은 벡터화된 데이터 저장을 위한 메모리 요구 사항을 95% 줄이는 동시에 높은 순위 품질과 스칼라 양자화와 유사한 저장 효율성을 유지합니다. BBQ는 Elasticsearch의 자가 관리 및 클라우드 사용자 모두를 위한 기술 미리보기로 제공되며, Apache Lucene에 기여될 것입니다.

Elastic (NYSE: ESTC) a introduit Better Binary Quantization (BBQ) dans Elasticsearch, une nouvelle approche de quantification évoluée à partir de la technologie RaBitQ. L'innovation permet une réduction de 95% des besoins en mémoire pour le stockage des données vectorisées tout en maintenant une qualité de classement élevée et une efficacité de stockage similaire à la quantification scalaire. BBQ est disponible en tant qu'aperçu technique pour les utilisateurs autogérés et cloud d'Elasticsearch, et sera contribué à Apache Lucene.

Elastic (NYSE: ESTC) hat Better Binary Quantization (BBQ) in Elasticsearch eingeführt, einen neuen Quantisierungsansatz, der aus der RaBitQ-Technologie hervorgegangen ist. Die Innovation erreicht eine Reduktion von 95% der Speicherkapazität für die Speicherung von vektorisierte Daten, während sie eine hohe Rankingqualität und ähnliche Speichereffizienz wie die Skalarquantisierung aufrechterhält. BBQ steht als technische Vorschau für sowohl selbstverwaltete als auch Cloud-Nutzer von Elasticsearch zur Verfügung und wird zu Apache Lucene beigetragen.

Positive
  • Achieved 95% memory reduction for vectorized data storage
  • Technology maintains high-ranking quality while reducing resource requirements
  • Available for both self-managed and cloud users
Negative
  • Currently only in tech preview phase, not fully released

Insights

BBQ represents a significant technical advancement in vector database optimization. The 95% memory reduction while maintaining high-ranking quality is a game-changing efficiency improvement for enterprise-scale vector search applications. This could substantially reduce infrastructure costs and improve performance for companies deploying large-scale AI and machine learning solutions.

The technology's contribution to Apache Lucene ensures broader industry adoption and positions Elastic strategically in the competitive vector database market. This innovation directly addresses the growing demand for efficient vector storage solutions in the era of AI and machine learning applications, potentially strengthening Elastic's market position against competitors like Pinecone and Milvus.

Developers using Elasticsearch to store vectorized data now benefit from 95% reduction in required memory

SAN FRANCISCO--(BUSINESS WIRE)-- Elastic (NYSE: ESTC), the Search AI Company, announced Better Binary Quantization (BBQ) in Elasticsearch. BBQ is a new quantization approach developed from insights drawn from a technique proposed by researchers at Nanyang Technological University Singapore called RaBitQ. Elastic’s BBQ is a distinct evolution of the ideas presented in the RaBitQ paper. It delivers advancements in quantization for Lucene and Elasticsearch, offering high-ranking quality while achieving a 95% memory reduction and similar storage offered by scalar quantization.

“Elasticsearch is evolving to become one of the best vector databases in the world, and we see our users wanting to put more and more vectorized data in it,” said Ajay Nair, general manager, Platform at Elastic. Better Binary Quantization is our latest innovation to reduce the resources needed to store vectorized data and provide freedom to our users to vectorize all the things.”

BBQ is now available as a tech preview in Elasticsearch for self-managed and cloud users and will be contributed to Apache Lucene. Read the Elastic blog for more information.

About Elastic

Elastic (NYSE: ESTC), the Search AI Company, enables everyone to find the answers they need in real-time using all their data, at scale. Elastic’s solutions for search, observability, and security are built on the Elastic Search AI Platform, the development platform used by thousands of companies, including more than 50% of the Fortune 500. Learn more at elastic.co.

Elastic and associated marks are trademarks or registered trademarks of Elastic N.V. and its subsidiaries. All other company and product names may be trademarks of their respective owners.

Media Contact

Elastic PR

PR-team@elastic.co

Source: Elastic N.V.

FAQ

What is Better Binary Quantization (BBQ) in Elasticsearch?

BBQ is a new quantization approach introduced by Elastic (ESTC) that reduces memory requirements for vectorized data by 95% while maintaining high-ranking quality.

How much memory reduction does Elastic's (ESTC) BBQ technology achieve?

Elastic's Better Binary Quantization (BBQ) achieves a 95% reduction in required memory for storing vectorized data.

Is Elastic's (ESTC) BBQ technology available for all users?

Yes, BBQ is available as a tech preview for both self-managed and cloud users of Elasticsearch.

Elastic N.V.

NYSE:ESTC

ESTC Rankings

ESTC Latest News

ESTC Stock Data

9.17B
102.75M
15.6%
90.97%
3.3%
Software - Application
Services-prepackaged Software
Link
United States of America
AMSTERDAM