Cognizant's AI Lab Announces Breakthrough Research for Fine-Tuning LLMs and Records its 61st U.S. Patent Issuance
Cognizant (Nasdaq: CTSH) announced that its AI Lab developed an evolution strategies (ES) method to fine-tune LLMs with billions of parameters, claiming improved scalability, stability and lower training-data needs versus reinforcement learning. The Lab reported a 10X speed-up after code and infrastructure refactors using faster vLLM inference. It also recorded two new U.S. patents—No. 12,406,188 (issued Sep 2, 2025) and No. 12,424,335 (issued Sep 23, 2025)—bringing the Lab's U.S. patent total to 61.
Cognizant (Nasdaq: CTSH) ha annunciato che il suo AI Lab ha sviluppato un metodo evolution strategies (ES) per perfezionare i LLM con miliardi di parametri, affermando una migliore scalabilità, stabilità e minori esigenze di dati di addestramento rispetto all'apprendimento per rinforzo. Il Lab ha riportato un 10X di velocità dopo rifattorizzazioni di codice e infrastrutture usando un'inferenza vLLM più veloce. Ha inoltre registrato due nuovi brevetti statunitensi—No. 12,406,188 (rilasciato il 2 settembre 2025) e No. 12,424,335 (rilasciato il 23 settembre 2025)—portando il totale dei brevetti USA del Lab a 61.
Cognizant (Nasdaq: CTSH) anunció que su AI Lab desarrolló un método evolution strategies (ES) para ajustar fino los LLMs con miles de millones de parámetros, afirmando una mejor escalabilidad, estabilidad y menores necesidades de datos de entrenamiento frente al aprendizaje por refuerzo. El Lab reportó un 10X de velocidad tras refactorizaciones de código e infraestructura usando una inferencia vLLM más rápida. También registró dos nuevas patentes estadounidenses—No. 12,406,188 (emitida el 2 de septiembre de 2025) y No. 12,424,335 (emitida el 23 de septiembre de 2025)—llevando el total de patentes en EE. UU. del Lab a 61.
Cognizant (Nasdaq: CTSH)는 자사의 AI Lab이 evolution strategies (ES) 방법을 개발하여 수십억 개의 매개변수를 가진 LLM을 미세 조정했다고 발표했습니다. 이는 확장성, 안정성 향상 및 강화 학습에 비해 학습 데이터 요구량 감소를 주장합니다. 실험실은 더 빠른 vLLM 추론을 사용한 코드 및 인프라 리팩토링 후 10X 속도 향상을 보고했습니다. 또한 미국 특허 두 건—No. 12,406,188 (2025년 9월 2일 발행) 및 No. 12,424,335 (2025년 9월 23일 발행)—으로 실험실의 미국 특허 합계가 61로 증가했습니다.
Cognizant (Nasdaq: CTSH) a annoncé que son AI Lab a développé une méthode evolution strategies (ES) pour affiner les LLMs comportant des milliards de paramètres, affirmant une meilleure évolutivité, stabilité et des besoins en données d'entraînement plus faibles par rapport à l'apprentissage par renforcement. Le Lab a rapporté une vitesse x10 après des refactorisations de code et d'infrastructure utilisant une inférence vLLM plus rapide. Il a également enregistré deux nouveaux brevets américains—No. 12,406,188 ( délivré le 2 septembre 2025) et No. 12,424,335 ( délivré le 23 septembre 2025)—portant le total des brevets américains du Lab à 61.
Cognizant (Nasdaq: CTSH) gab bekannt, dass sein AI Lab eine evolution strategies (ES)-Methode entwickelt hat, um LLMs mit Milliarden von Parametern feinabzustimmen, und behauptet eine verbesserte Skalierbarkeit, Stabilität und geringeren Bedarf an Trainingsdaten im Vergleich zum Reinforcement Learning. Das Labor berichtete von einer 10X-Beschleunigung nach Code- und Infrastruktur-Refactorings unter Verwendung einer schnelleren vLLM-Inferenz. Außerdem wurden zwei neue US-Patente registriert—No. 12,406,188 (am 2. September 2025 erteilt) und No. 12,424,335 (am 23. September 2025 erteilt)—und erhöhte die Summe der US-Patente des Lab auf 61.
Cognizant (بورصة ناسداك: CTSH) أعلنت أن مختبر الذكاء الاصطناعي لديها طور طريقة استراتيجيات التطور (ES) لضبط نماذج اللغة الكبيرة التي تحتوي على مليارات المعاملات، مع ادعاء تحسين القدرة على التوسع، الاستقرار، وانخفاض احتياجات بيانات التدريب مقارنة بالتعلم من التعزيز. وأبلغ المختبر عن سرعة تزيد بعشر مرات بعد إعادة كتابة الشفرة والهياكل الأساسية باستخدام استنتاج vLLM أسرع. كما سجل برائتيْن أمريكيتيْن جديدتيْن—No. 12,406,188 (مصدرة في 2 سبتمبر 2025) و No. 12,424,335 (مصدرة في 23 سبتمبر 2025)—مما رفع الإجمالي لبراءات Lab الأمريكية إلى 61.
Cognizant (纳斯达克代码:CTSH)宣布其 AI 实验室开发了一种 进化策略(ES) 方法,用于对具有数十亿个参数的大模型进行微调,声称在可扩展性、稳定性和训练数据需求方面优于强化学习。实验室在代码和基础设施重构后使用更快的 vLLM 推理,报道实现了 10 倍加速。还新取得两项美国专利——No. 12,406,188(于 2025 年 9 月 2 日颁发)和 No. 12,424,335(于 2025 年 9 月 23 日颁发)——将实验室在美国的专利总数增至 61。
- 10X speed-up in ES fine-tuning codebase
- Two U.S. patents issued on Sep 2, 2025 and Sep 23, 2025
- Reached 61 U.S. patents in AI innovations
- Demonstrated ES fine-tuning on LLMs with billions of parameters
- None.
Insights
New ES-based fine-tuning and two U.S. patents strengthen Cognizant's AI capabilities and may reduce LLM training costs.
Cognizant's AI Lab reports a novel fine-tuning method using evolution strategies (ES) that it says scales to multi‑billion‑parameter LLMs, claims improved stability versus reinforcement learning, and reports a 10X speed-up after infrastructure refactoring. The announcement pairs this research with two newly issued U.S. patents, bringing the lab's U.S. total to 61, dated
The business mechanism is clear: a gradient‑free ES framework aims to reduce required training data and lower compute cost for post‑training alignment of LLMs, while the patents target epidemiological decision models and evolved data augmentation to improve model robustness with limited data. Key dependencies and risks include real‑world reproducibility, peer validation of comparative performance versus state‑of‑the‑art RL, and successful scaling to the largest models the Lab plans to target; those factors determine practical cost and quality gains.
Watch for formal benchmarks, open‑source code releases or peer‑reviewed results, and evidence of scaling to the largest models over the next 6–18 months; also monitor any product integrations or commercial announcements that show this research moving into customer solutions.
"We're excited to be continuing to break new ground when it comes to AI innovation and be recognized for it by the US patent office," said Babak Hodjat, Chief AI Officer at Cognizant's AI Lab. "Our latest research, using evolution strategies (ES) for fine-tuning LLMs, has the potential to disrupt the industry. Our approach not only uses less training data than reinforcement learning (RL); it also makes the process more accurate, increasing the quality of work the AI can produce. It's an exciting time for our Lab."
In new groundbreaking research titled "Evolution Strategies at Scale: LLM Fine-Tuning Beyond Reinforcement Learning" (Xin Qiu, Yulu Gan, Conor F. Hayes, Qiyao Liang, Elliot Meyerson, Babak Hodjat, Risto Miikkulainen), Cognizant's AI Lab introduces the first successful use of evolution strategies (ES) to fine-tune LLMs with billions of parameters, marking a transformative new approach beyond traditional reinforcement learning (RL) methods. The net outcome has the potential to increase the effectiveness of training LLMs for a given task while significantly reducing the required training data and associated cost.
Every major LLM must be fine-tuned to become more aligned and useful for the task it is being asked to address, similar to how a student eventually graduates in a particular specialist domain. Reinforcement Learning (RL) is the current preferred method for training LLMs but it is expensive, hard to scale and sometimes the AI learns to "game the system" instead of producing high-quality work. Using evolution strategies – a gradient-free optimization algorithm that directly searches in parameter space – Cognizant's AI Lab was able to overcome the major limitations of RL-based fine-tuning methods. This innovative framework demonstrated improved performance compared to state-of-the-art RL techniques, delivering greater scalability, efficiency, and stability. As LLMs grow increasingly complex, this ES-based fine-tuning approach marks a major leap forward toward more reliable, adaptable, and efficient post-training by simplifying hyperparameter tuning and improving robustness. Since our initial ES fine-tuning code release, we have optimized our codebase and achieved a 10X speed-up, by refactoring the infrastructure with faster vLLM inference engines. The Lab's next step is to scale its method to fine-tune the largest available LLMs across a range of complex tasks.
In addition to this breakthrough, the lab cemented other important innovations, with two new
-
U.S. Patent No. 12,424,335 (issued September 23, 2025) covers systems and methods for AI-based optimized decision making for epidemiological modeling. It describes the use of neural networks to predict epidemiological trends, including applications such as COVID-19, by combining separate LSTM models for case and intervention histories into a unified predictor. By enforcing real-world constraints, the approach aims to improve forecast accuracy even with limited data, advancing deep learning applications in public health. -
U.S. Patent No. 12,406,188 (issued on September 2, 2025) describes a systems and methods for evolved data augmentation and selection, utilizing population-based search to automatically discover and select optimal data augmentation operations. This approach is designed to improve model robustness and performance, even with limited datasets, enhancing the efficiency and reliability of AI across real-world applications.
These innovations, developed by Cognizant's researchers including Dr. Jason Liang, Dr. Elliot Meyerson, Olivier Francon, Dr. Xin Qiu and Professor Risto Miikkulainen, reinforce Cognizant's leadership in pushing the boundaries of AI and machine learning.
"While deep learning can be applied to many real-world domains, its transformative power often comes out only when there are millions of data points to train the models," said Risto Miikkulainen, VP of Research and Professor of Computer Science at UT
About Cognizant
Cognizant (Nasdaq: CTSH) engineers modern businesses. We help our clients modernize technology, reimagine processes and transform experiences so they can stay ahead in our fast-changing world. Together, we're improving everyday life. See how at www.cognizant.com or @cognizant.
About the Cognizant AI Lab
The mission of the Cognizant AI Lab is to maximize human potential with Decision AI, a form of AI that combines generative AI, multi-agent architecture, deep learning, and evolutionary AI to create sophisticated decision-making systems. Decision AI powers Cognizant's Neuro® AI platform, which is utilized by Fortune 500 companies and non-profits to discover new ways to exceed their goals. The platform enables organizations to rapidly build AI that optimizes decision-making, leading to revenue growth and societal progress.
Led by AI pioneers Babak Hodjat and Risto Miikkulainen, the lab collaborates with institutions, academia, and technology partners to develop groundbreaking AI solutions responsibly. With over 120 patent filings globally (including issued and pending applications), the lab excels at combining scientific innovation with commercial application. It supports Cognizant's goal of improving everyday life, focusing on business and AI-for-good applications.
|
Name: Gabrielle Gugliocciello |
|
Name: Sarah Douglas Email: sarah.douglas@cognizant.com |
|
Name: Vipin Nair Email: Vipin.Nair@cognizant.com |
View original content to download multimedia:https://www.prnewswire.com/news-releases/cognizants-ai-lab-announces-breakthrough-research-for-fine-tuning-llms-and-records-its-61st-us-patent-issuance-302597082.html
SOURCE Cognizant